Ex:

a) Find the value of load impedance, z_{L}, that makes $z_{\mathrm{L} \Delta}=24.6-j 36.9 \Omega$. Note that $z_{\mathrm{L} \Delta}$ is the equivalent impedance of the entire circuit.

b) For the above 3-phase balanced circuit, find the numerical value of the phasor current $\mathbf{I}_{\text {CA }}$.
c) For the above 3-phase balanced circuit, find the numerical value of the phasor voltage $\mathbf{V}_{\text {b'a' }}$.
b) We replace the secondary with reflected impedance z_{r} in the primary.

$$
4.6+j 31+\left(z_{R}=\frac{(10 \Omega)^{2}}{j 40+1 \Omega+z_{L}}\right)=\begin{aligned}
& 24.6-j 36.9 \Omega \\
& \frac{-4.6-j 3.1 \Omega}{20-j 40 \Omega}
\end{aligned}
$$

Inverting both sides, we have the following:

$$
\begin{aligned}
z_{L} & =\frac{j 40+1 \Omega+z_{L}}{100 \Omega^{2}}=\frac{1}{20-j 40 \Omega} \\
& =1+2 i-1-j 4 \Omega^{2}-(1+j 40) \Omega \\
z_{L} & =-j 38 \Omega
\end{aligned}
$$

sol'n: a) We use a single-phase model to find $V_{A N}$. From $V_{A N}$ we can find $V_{A B}$, then $V_{C A,}$ and then II CA.

We only need to convert $z_{L \Delta}$ to $z_{L Y}$:

$$
\begin{gathered}
z_{L Y}=\frac{z_{L \Delta}}{3}=\frac{24.6-j 36.9}{3} \Omega \\
z_{L Y}=8.2-j 12.3 \Omega
\end{gathered}
$$

single-phase model:

$$
\begin{aligned}
V_{A N} & =V_{g Y_{i}^{\prime}} \frac{z_{L Y}}{z_{g Y}+z_{l_{i n e}}+z_{L Y}} \\
& =67 \angle 0^{\circ} \mathrm{V} \frac{8.2-j 12.3 \Omega}{11.9+j 19.7+j 6+8.2-j 12.7 \Omega} \\
& =67 \angle 0^{\circ} \mathrm{V} \frac{8.2-j 12.3 \Omega}{20.1+j 13.4 \Omega} \\
& \doteq 67 \angle 0^{\circ} \mathrm{V} \cdot 0.612<-90^{\circ} \\
V_{A N} & =41<-90^{\circ} \mathrm{V}
\end{aligned}
$$

We use a phasor diagram to find $V_{A B}$.

$$
\begin{aligned}
& V_{A B}=41 \angle-90^{\circ} \mathrm{V} \cdot \sqrt{3} \angle 30^{\circ} \\
& V_{A B}=71 \angle-60^{\circ} \mathrm{V}
\end{aligned}
$$

we shift $+120^{\circ}$ to get $V_{C A}$:

$$
\begin{aligned}
V_{C A} & =V_{A B} \cdot 1 \angle 120^{\circ} \\
V_{C A} & \doteq 71 \angle 60^{\circ} \mathrm{V} \\
\text { Using }_{L A} & \text { and } V_{C A} \text { we find } I_{C A}= \\
I_{C A} & =\frac{V_{C A}}{z_{L A}} \doteq \frac{71 \angle 60^{\circ} \mathrm{V}}{24.6-j^{36.9 \Omega}} \\
& \doteq \frac{71 \angle 60^{\circ} v}{44.35 \angle-56.3^{\circ} \Omega} \\
\Pi_{C A} & \doteq 1.6 \angle 116.3^{\circ} \mathrm{A}
\end{aligned}
$$

c) Since $V_{\mathrm{AB}}=V_{\mathrm{AN}} \sqrt{3} \angle 30^{\circ}$, we have the same relationship for the generator side:

$$
V_{\mathrm{a}^{\prime} \mathrm{b}^{\prime}}=V_{\mathrm{a}^{\prime} \mathrm{n}} \sqrt{3} \angle 30^{\circ}
$$

or

$$
V_{\mathrm{a}^{\prime} \mathrm{b}^{\prime}}=67 \angle 0^{\circ} \cdot \sqrt{3} \angle 30^{\circ} \doteq 116 \angle 30^{\circ}
$$

Reversing the indices to $\mathrm{b}^{\prime} \mathrm{a}^{\prime}$ means changing the sign, which is equivalent to adding or subtracting 180°.

$$
V_{\mathrm{b}^{\prime} \mathrm{a}^{\prime}} \doteq 116 \angle 210^{\circ}=116 \angle-150^{\circ}
$$

