

After being open for a long time, the switch closes at t = 0.

Find i(t) for t > 0.

SOL'N: We calculate characteristic roots using the circuit for t > 0. We set the source to zero to find R_{Thev} for the roots, which will be the parallel value of the two resistors:

$$480 \text{ m}\Omega \parallel 960 \text{ m}\Omega = 480 \text{ m}\Omega \cdot 1 \parallel 2 = 480 \text{ m}\Omega \cdot \frac{2}{3} = 320 \text{ m}\Omega$$

As for all RLC circuits, we have the following formula for the characteristic roots:

$$s_{1,2} = -\alpha \pm \sqrt{\alpha^2 - \omega_o^2}$$

For a series RLC circuit, the value of α is one-half the inverse *L*/*R* time constant:

$$\alpha = \frac{R}{2L} = \frac{320 \text{ m}\Omega}{2 \cdot 1 \mu \text{H}} = 160 \text{ k/s}$$

The resonant frequency, ω_o , is the inverse of the square root of the product of L and C:

$$\omega_{o} = \frac{1}{\sqrt{LC}}$$
 or $\omega_{o}^{2} = \frac{1}{LC} = \frac{1}{1 \,\mu\text{H} \cdot 25 \,\mu\text{F}} = \left(\frac{1}{5 \,\mu} \,\text{r/s}\right)^{2} = (200 \,\text{kr/s})^{2}$

We find that, since $\alpha < \omega_0$, the roots are complex:

$$s_{1,2} = -160 \text{ kr/s} \pm \sqrt{(160 \text{ kr/s})^2 - (200 \text{ kr/s})^2} = -160 \text{ kr/s} \pm j120 \text{ kr/s}$$

Because the roots are complex, the circuit is under-damped:

$$\omega_{d} = \sqrt{\omega_{0}^{2} - \alpha^{2}} = \sqrt{(200k)^{2} - (160k)^{2}} r/s = 120 kr/s$$
We use the general form of solution for an under-damped circuit:
 $i(t) = A_{1}e^{-\alpha t} \cos(\omega_{0}t) + A_{2}e^{-\alpha t} \sin(\omega_{0}t) + A_{3}$
 $A_{3} = \text{final value}$
For $t \rightarrow \infty$, $L = wire$, $C = \text{open}$, switch closed.
480mat IA \uparrow Thoma field $+ \alpha$
We have a current divider.
 $i(t \rightarrow \infty) = 1A \cdot \frac{480mR}{480 mR + 760mR} = \frac{1}{3}A$
Now find $i(0^{+})$ and $\frac{di(t)}{dt}\Big|_{t=0^{+}}$
Start at $t=0^{-}$ and find $i_{L}(0^{-})$, $v_{c}(0^{-})$.
(Then $we'll$ as $i_{L}(0^{+}) = v_{c}(0^{-})$.)
At $t=0^{-}$, $L = wire$, $C = \text{open}$, switch open.
 $i_{L}(0^{-}) = 0A$

For t=0⁺, one approach is to take a Thevenin equivalent of the durrent source and R¹3.

v (o+) = 320 mV from above circuit

We match this to symbolic v(0+):

$$v(t) = A_{1}e^{-\kappa t} \cos(\omega_{d}t) + A_{2}e^{-\kappa t} \sin(\omega_{d}t) + A_{3}$$

$$v(o^{+}) = A_{1} + A_{3}$$
What is A_{3} for $v(t)$? It will be the A_{3} we found for $i(t)$ multiplied by $160m.\Omega_{r}$, (by $0hm's \ Lew$).

$$A_{3} = \frac{1}{3}A \cdot 960 \text{ m}.\Omega = 320 \text{ mV} \ (= 1A \cdot R_{Th})$$
Back to $v(o^{+})$, we have.

$$v(o^{+}) = A_{1} + A_{3} = 320 \text{ mV} \text{ from circuit}$$

$$u$$

$$320mV$$

$$\therefore A_{1} = 0$$
Now we find $\frac{dv(t)}{dt} \Big|_{t=0^{+}}$ by writing

$$v(t) \text{ in terms of state vars } i_{L} \text{ and } v_{d}.$$
We must $n_{o}t$ plug in values until after
we take d/dt .

$$v(t) = V_{Th} - R_{Th} i_{L} \quad works \text{ since } i_{L}$$

$$\frac{dv(t)}{dt} = \frac{dv_{Th}}{L} - R_{Th} \frac{di_{L}}{dt}$$

$$O \quad \text{since } V_{Th} = \text{const}$$
Now use $di_{L} = \frac{v_{L}}{L}$, $\begin{pmatrix}and \ dv_{d} = i_{d} \ usually \\ dt & L \end{pmatrix}$

$$\frac{dv(t)}{dt} = -R_{Th} \frac{v_{L}}{L}$$

$$\frac{dv(t)}{dt} \Big|_{t=0^{+}} = -\frac{R_{Th}}{L} \frac{v_{L}(0^{+})}{|\mu|} = -\frac{320 \text{ m}\Omega}{|\mu|} \cdot 320 \text{ mV}$$
From symbolic v(t) we have
$$\frac{dv(t)}{dt} \Big|_{t=0^{+}} = A_{1}(-\infty) + A_{2}wd$$
Thus, $A_{1}(-\infty) + A_{5}wd = -\frac{320}{20} \text{ m}\Omega - 320 \text{ mV}$

$$Bat A_{1} = 0 \cdot \therefore A_{2} = -\frac{320}{20} \text{ m}\Omega - 320 \text{ mV}$$

$$I_{L}H + (w_{d} = 120 \text{ kr/s})$$

$$v(t) = -\frac{320 \text{ m}\Omega + 320 \text{ mV}}{I_{L}H + 120 \text{ kr/s}} = \frac{-160 \text{ kt}}{100 \text{ kt}} (120 \text{ kt}) + 320 \text{ mV}$$

$$i(t) = -\frac{320 \text{ MV} - \frac{1/3}{100 \text{ kr/s}}}{I_{L}AH + 120 \text{ kr/s}} = \frac{-160 \text{ kt}}{100 \text{ kt}} + \frac{1}{3}A$$

$$i(t) = -\frac{320 \text{ MV} - \frac{1/3}{9}}{9} = \sin(120 \text{ kt}) + \frac{1}{3}A$$