Ex:

After being open for a long time, the switch closes at $t=0$.
Find $i(t)$ for $t>0$.

Sol'n: We calculate characteristic roots using the circuit for $t>0$. We set the source to zero to find $R_{\text {Thev }}$ for the roots, which will be the parallel value of the two resistors:

$$
480 \mathrm{~m} \Omega\|960 \mathrm{~m} \Omega=480 \mathrm{~m} \Omega \cdot 1\| 2=480 \mathrm{~m} \Omega \cdot \frac{2}{3}=320 \mathrm{~m} \Omega
$$

As for all RLC circuits, we have the following formula for the characteristic roots:

$$
s_{1,2}=-\alpha \pm \sqrt{\alpha^{2}-\omega_{o}^{2}}
$$

For a series RLC circuit, the value of α is one-half the inverse L / R time constant:

$$
\alpha=\frac{R}{2 L}=\frac{320 \mathrm{~m} \Omega}{2 \cdot 1 \mu \mathrm{H}}=160 \mathrm{k} / \mathrm{s}
$$

The resonant frequency, ω_{0}, is the inverse of the square root of the product of L and C :

$$
\omega_{\mathrm{o}}=\frac{1}{\sqrt{L C}} \text { or } \omega_{\mathrm{o}}^{2}=\frac{1}{L C}=\frac{1}{1 \mu \mathrm{H} \cdot 25 \mu \mathrm{~F}}=\left(\frac{1}{5 \mu} \mathrm{r} / \mathrm{s}\right)^{2}=(200 \mathrm{kr} / \mathrm{s})^{2}
$$

We find that, since $\alpha<\omega_{0}$, the roots are complex:

$$
s_{1,2}=-160 \mathrm{kr} / \mathrm{s} \pm \sqrt{(160 \mathrm{kr} / \mathrm{s})^{2}-(200 \mathrm{kr} / \mathrm{s})^{2}}=-160 \mathrm{kr} / \mathrm{s} \pm j 120 \mathrm{kr} / \mathrm{s}
$$

Because the roots are complex, the circuit is under-damped:

$$
\omega_{\mathrm{d}}=\sqrt{\omega_{\mathrm{o}}^{2}-\alpha^{2}}=\sqrt{(200 \mathrm{k})^{2}-(160 \mathrm{k})^{2}} \mathrm{r} / \mathrm{s}=120 \mathrm{kr} / \mathrm{s}
$$

We use the general form of solution for an under-damped circuit:

$$
\begin{aligned}
& i(t)=A_{1} e^{-\alpha t} \cos \left(\omega_{\mathrm{d}} t\right)+A_{2} e^{-\alpha t} \sin \left(\omega_{\mathrm{d}} t\right)+A_{3} \\
& A_{3}=\text { final value } \\
& \text { For } t \rightarrow \infty, \quad \text { L=wire, } C=\text { open, switch closed. }
\end{aligned}
$$

We have a current divider:

$$
i(t \rightarrow \infty)=1 A \cdot \frac{480 \mathrm{~m} \Omega}{480 \mathrm{~m} \Omega+960 \mathrm{~m} \Omega}=\frac{1}{3} A
$$

$$
\text { Now find } i\left(6^{+}\right) \text {and }\left.\frac{d i(t)}{d t}\right|_{t=0^{+}}
$$

$$
\text { Start at } t=0^{-} \text {and find } i_{L}\left(0^{-}\right), v_{c}\left(0^{-}\right) \text {. }
$$

$$
\text { (Then well use } i_{L}\left(0^{+}\right)=i_{L}\left(0^{-}\right) \text {, }
$$

$$
\left.v_{c}\left(0^{+}\right)=v_{c}\left(0^{-}\right) .\right)
$$

At $t=0^{-}, L=w i r e, C=o p e n$, switch open.

For $t=0^{+}$, one approach is to take a Thevenin equivalent of the durrent source and $R^{\prime} s$.

$V_{T h}=V_{a, b}$ with nothing attacked to a, b.

$$
v_{T h}=1 A \cdot 480 \mathrm{~m} \Omega \| 960 \mathrm{~m} \Omega=14 \cdot 320 \mathrm{~m} \Omega=320 \mathrm{mV}
$$

$R_{T h}=$ resistance seen looking into a, b with $1 A$ source turned off

$$
R_{T h}=480 \mathrm{~m} \Omega \| 960 \mathrm{~m} \Omega=320 \mathrm{~m} \Omega \text { (as noted above) }
$$

We now find $v(t)$ in our new circuit and use $i(t)=v(t) / 960 \mathrm{~m} \Omega$ from ohm's law.

At $t=0^{+}$we have $i_{L}\left(0^{+}\right)=i_{L}\left(0^{-}\right)=O A$

$$
v_{C}\left(0^{+}\right)=v_{c}\left(0^{-}\right)=o v .
$$

$v\left(0^{+}\right)=320 \mathrm{mV}$ from above circuit

We match this to symbolic $v\left(0^{+}\right)$:

$$
\begin{aligned}
& v(t)=A_{1} e^{-\alpha t} \cos \left(\omega_{d} t\right)+A_{2} e^{-\alpha c t} \sin \left(\omega_{d} t\right)+A_{3} \\
& v\left(0^{+}\right)=A_{1}+A_{3}
\end{aligned}
$$

What is A_{3} for $v(t)$? It will be the A_{3} we found for $i(t)$ multiplied by $960 \mathrm{~m} \Omega$, (by Ohm's Law).

$$
A_{3}=\frac{1}{3} A \cdot 960 \mathrm{~m} \Omega=320 \mathrm{mV} \quad\left(=1 A \cdot R_{T h}\right)
$$

Back to $v\left(0^{+}\right)$, we have

$$
\begin{aligned}
& v\left(0^{+}\right)=A_{1}+\underset{n}{A_{3}}=320 \mathrm{mV} \text { from circuit } \\
& \therefore A_{1}=0
\end{aligned}
$$

Now we find $\left.\frac{d v(t)}{d t}\right|_{t=0^{+}}$by writing $v(t)$ in terms of state vars i_{L} and v_{C}.

We must not plug in values until after we take $d / d t$.

$$
\begin{aligned}
& v(t)= v_{T h}-R_{T h} i_{L} \quad \text { works since } i_{L} \\
& \frac{d v(t)}{d t}= \frac{d y / h}{d t}-R_{T h} \frac{d i_{L}}{d t} \\
& 0 \text { since var } \\
& V_{T h}=\text { cons }
\end{aligned}
$$

Now use $\frac{d i_{L}}{d t}=\frac{v_{L}}{L}$, (and $\frac{d v_{C}}{d t}=\frac{i_{c}}{c}$ usually).

$$
\begin{aligned}
& \frac{d v(t)}{d t}=-R_{T h} \frac{v_{L}}{L} \\
& \left.\frac{d v(t)}{d t}\right|_{t=0^{+}}=-\frac{R_{T h}}{L} v_{L}\left(0^{+}\right)=-\frac{320 \mathrm{~m} \Omega}{l \mu H} \cdot 320 \mathrm{mV}
\end{aligned}
$$

From symbolic $v(t)$ we have

$$
\left.\frac{d v(t)}{d t}\right|_{t=0^{+}}=A_{1}(-\alpha)+A_{2} w_{d}
$$

Thus, $\quad A_{1}(-\alpha)+A_{\tau} \omega d=-\frac{320 \mathrm{~m} \Omega}{1 \mu \mathrm{H}} \cdot 320 \mathrm{mV}$

$$
\begin{aligned}
& \text { But } A_{1}=0 . \quad \therefore A_{2}=-\frac{320 \mathrm{~m} \Omega \cdot 320 \mathrm{mV}}{1 \mu \mathrm{H} \cdot\left(\omega_{d}=120 \mathrm{kr} / \mathrm{s}\right)} \\
& v(t)=-\frac{320 \mathrm{~m} \Omega \cdot 320 \mathrm{mV}}{1 \mu \mathrm{H} \cdot 120 \mathrm{kr} / \mathrm{s}} e^{-160 \mathrm{kt}} \sin (120 \mathrm{kt})+320 \mathrm{mV} \\
& i(t)=\frac{v(t)}{960 \mathrm{~m} \Omega} \quad \text { since } v \text { is across } 960 \mathrm{~m} \Omega \\
& i(t)=-\frac{320 \mu \mathrm{~V} \cdot 1 / 3}{14 \mathrm{H} \cdot 120 \mathrm{kr} / \mathrm{s}} e^{-160 \mathrm{kt}} \sin (120 \mathrm{kt})+\frac{1}{3} \mathrm{~A} \\
& i(t)=-\frac{8 \mathrm{~A}}{9}-160 \mathrm{kt} \\
& i \sin (120 \mathrm{kt})+\frac{1}{3} \mathrm{~A}
\end{aligned}
$$

