1.

After being open for a long time, the switch closes at $t=0$.
Give expressions for the following in terms of no more than $v_{\mathrm{g}}, R_{1}, R_{2} L$, and C :

$$
i\left(t=0^{+}\right) \quad \text { and }\left.\quad \frac{d i(t)}{d t}\right|_{t=0^{+}}
$$

2. Find the numerical value of R_{2} given the following information:

$$
\begin{gathered}
R_{1}=150 \Omega \quad L=40 \mathrm{mH} \quad C=3.2 \mu \mathrm{~F} \\
\alpha=1250 \mathrm{r} / \mathrm{s} \quad \omega_{\mathrm{d}}=2500 \mathrm{r} / \mathrm{s}
\end{gathered}
$$

3.

At $t=0, v_{\mathrm{g}}(t)$ switches instantly from $-\mathrm{v}_{\mathrm{O}}$ to v_{O}.
a) Write the state-variable equations for the circuit in terms of the state vector:

$$
\vec{x}=\left\lfloor\begin{array}{l}
i_{1} \\
v_{1} \\
v_{2}
\end{array}\right\rfloor
$$

b) Evaluate the state vector at $t=0^{+}$.
4.

After being open for a long time, the switch closes at $t=0$.

$$
i_{g}=0.2 \mathrm{~A} \quad R_{1}=50 \Omega \quad R_{2}=12.5 \Omega \quad L=10 \mathrm{mH} \quad C=16 \mu \mathrm{~F}
$$

State whether $v(t)$ is under-damped, over-damped, or critically-damped.
5. Write a numerical time-domain expression for $v(t), t>0$, the voltage across C.

This expression must not contain any complex numbers.

