1.

After being open for a long time, the switch closes at t = 0.

Give expressions for the following in terms of no more than v_g , R_1 , R_2 L, and C:

$$i(t=0^+)$$
 and $\frac{di(t)}{dt}\Big|_{t=0^+}$

2. Find the numerical value of R_2 given the following information:

 $R_1 = 150 \Omega$ L = 40 mH $C = 3.2 \,\mu\text{F}$ $\alpha = 1250 \,\text{r/s}$ $\omega_d = 2500 \,\text{r/s}$

- At t = 0, $v_g(t)$ switches instantly from $-v_0$ to v_0 .
- a) Write the state-variable equations for the circuit in terms of the state vector:

$$\vec{x} = \begin{bmatrix} i_1 \\ v_1 \\ v_2 \end{bmatrix}$$

b) Evaluate the state vector at $t = 0^+$.

4.

After being open for a long time, the switch closes at t = 0.

 $i_g = 0.2 \text{ A}$ $R_1 = 50 \Omega$ $R_2 = 12.5 \Omega$ L = 10 mH $C = 16 \mu \text{F}$

State whether v(t) is under-damped, over-damped, or critically-damped.

5. Write a numerical time-domain expression for v(t), t > 0, the voltage across *C*. This expression must not contain any complex numbers.