Ex:

At t = 0, $v_g(t)$ switches instantly from $-v_0$ to v_0 .

a) Write the state-variable equations for the circuit in terms of the state vector:

$$\vec{x} = \begin{bmatrix} i_1 \\ v_1 \\ v_2 \end{bmatrix}$$

b) Evaluate the state vector at $t = 0^+$.

SOL'N: a) We put lst derivatives of state vars on the left side. We then equate the 1st derivatives with non-derivatives via component equip:

$$\frac{di_L}{dt} = \frac{V_L}{L} \quad and \quad \frac{dV_C}{dt} = \frac{i_C}{C}$$

Then we write v or it in terms of only state variables and components.

For the last step, it helps to replace L's with i sources and d's with V sources.

We also use $t \ge 0$, so $V_g = +V_0$.

 $i_1 \bigoplus^{\dagger} v_{L1} \stackrel{\downarrow}{\underset{\scriptstyle \leq R_1}{\overset{\scriptstyle 1}{\underset{\scriptstyle \leq R_2}{\overset{\scriptstyle 1}{\underset{\scriptstyle \leq R_2}{\underset{\scriptstyle R_2}{\atop\scriptstyle R_2}{\underset{\scriptstyle R_2}{\underset{\scriptstyle R_2}{\underset{\scriptstyle R_2}{\atop\scriptstyle R_2}{\underset{\scriptstyle R_2}{\atop\scriptstyle R_2}{\underset{\scriptstyle R_2}{\atop\scriptstyle R_2}{\underset{\scriptstyle R_2}{\atop\scriptstyle R_2}{\underset{\scriptstyle R_2}{\atop\scriptstyle R_2}{\atop\scriptstyle R_2}{\atop\scriptstyle R_2}{\atop\scriptstyle R_2}{\atop\scriptstyle R_2}{\atop\scriptstyle R_2}{\scriptstyle R_2}{\scriptstyle R_2}{\scriptstyle R_2}}}}}}}}}}}}$ J^V₀ ⊕ V₂ ⊕ $\frac{di_1}{dt} = \frac{V_{L1}}{L} = \frac{1}{L} \left(\frac{V_2 + i_{c2} R_2}{L} \right)$ we must use only i, V1, V2 \$0 this must be replaced $\frac{dv_1}{dt} = \frac{i_{c1}}{c_1} = \frac{1}{c_1} i_1 \quad (easy)$ $\frac{dv_2}{dt} = \frac{1}{c_2} = \frac{1}{c_2}$ is a measure as before; $\frac{dv_2}{dt} = \frac{1}{c_2}$ we must replace this with expression containing only i, vi, and v2 Use superposition to find icz. Before we start, we observe two things: 1) v, is in series with a current source and may be ignored, and 2) We can use just two cases the first with only i, on, and the second with only vo and vzon. case II: dase I: RZŻ R,\$ R, 1

For iczl, we have an i-divider: $i_{d21} = -i_1 \frac{R_1}{R_1 + R_2}$ For itzz, we use the voltage across R, and Rz: $\hat{U}_{d22} = \frac{V_0 - V_2}{R_1 + R_2}$ 50 $i_{c2} = -\frac{i_1R_1}{R_1 + R_2} + \frac{V_0 - V_2}{R_1 + R_2}$ Our state-space egins: $\frac{di_{1}}{dt} = \frac{1}{L} \begin{bmatrix} v_{2} + \frac{i_{1}R_{1}R_{2}}{R_{1}+R_{2}} + \frac{(v_{0} - v_{2})R_{2}}{R_{1}+R_{2}} \end{bmatrix}$ $\frac{dv_i}{dt} = \frac{1}{c_i} \frac{v_i}{v_i}$ $\frac{dv_2}{dt} = \frac{1}{C_0} \left(-\frac{i_1 R_1}{R_1 + V_0 - V_2} - \frac{1}{R_1 + R_2} \right)$ Because we are dealing with state variables, their values are the same at $t=0^+$ as at $t=0^-$. At t=0, L= wire, C, and C2 = open. -Vo at top node since i=0 (so no v-drop across R1) $i_1 \downarrow R_1 \ge R_2 \ge Note; v_q = -v_0$ + $v_1 - v_0 \oplus v_2$ for t < 0.

6)

No current flows, so the voltage across R, and Rz is OV. We have $-v_0$ at the top node, and we have $-v_0$ at the top of C_1 and C_2 . So $V_{C1}(0^-) = V_{C2}(0^-) = -v_0$ II II II $v_1(0^+)$ $v_2(0^+)$ We also have $i_1(0^-) = OA$ because C_1 is open. $i_1(0^+) = OA$ $v_1(0^+) = -v_0$

 $V_2(o^+ = - V_o$