Ex:

At $t=0, v_{\mathrm{g}}(t)$ switches instantly from $-\mathrm{v}_{\mathrm{O}}$ to v_{o}.
a) Write the state-variable equations for the circuit in terms of the state vector:

$$
\vec{x}=\left\lfloor\begin{array}{l}
i_{1} \\
v_{1} \\
v_{2}
\end{array}\right\rfloor
$$

b) Evaluate the state vector at $t=0^{+}$.

Sol'n: a) We put $L^{\text {st }}$ derivatives of state vars on the left side. We then equate the $1^{\text {st }}$ derivatives with non-derivatives via component eq'ns:

$$
\frac{d i_{L}}{d t}=\frac{v_{L}}{L} \quad \text { and } \quad \frac{d v_{C}}{d t}=\frac{i_{C}}{C}
$$

Then we write v_{L} or i_{C} in terms of only state variables and components.

For the last step, it helps to replace L 's with i sources and C's with V sources. We also use $t>0$, so $v g=+v_{0}$.

$$
\frac{d i_{1}}{d t}=\frac{v_{L 1}}{L}=\frac{1}{L}\left(v_{2}+i_{C 2} R_{2}\right)
$$

we must use only i_{1}, v_{1}, v_{2} \$o this must be replaced

$$
\frac{d v_{1}}{d t}=\frac{i_{c l}}{c_{1}}=\frac{1}{c_{1}} i_{1} \quad \text { (easy) }
$$

$\frac{d v_{2}}{d t}=\frac{i_{c 2}}{c_{2}}=\frac{1}{c_{2}} i_{c 2} \leftarrow$ same as before; this with expression containing only

$$
i_{1}, v_{1} \text {, and } v_{2}
$$

Use superposition to find ice.
Before we start, we observe two things:

1) v_{1} is in series with a current source and may be ignored, and
2) We can use just two casesthe first with only i, on, and the second with only v_{0} and r_{2} on.
case I:

case II:

For $i_{c 21}$, we have an i-divider:

$$
i_{c 21}=-i_{1} \frac{R_{1}}{R_{1}+R_{2}}
$$

For $i c z z$, we use the voltage across R_{1} and R_{z} :

$$
i_{c z 2}=\frac{v_{0}-v_{2}}{R_{1}+R_{2}}
$$

So $i_{c 2}=-\frac{i_{1} R_{1}}{R_{1}+R_{2}}+\frac{V_{0}-V_{2}}{R_{1}+R_{2}}$.
Our state-space eq'ns:

$$
\begin{aligned}
& \frac{d i_{1}}{d t}=\frac{1}{L}\left[v_{2}-\frac{i_{1} R_{1} R_{2}}{R_{1}+R_{2}}+\frac{\left(v_{0}-v_{2}\right) R_{2}}{R_{1}+R_{2}}\right] \\
& \frac{d v_{1}}{d t}=\frac{1}{C_{1}} i_{1} \\
& \frac{d v_{2}}{d t}=\frac{1}{c_{2}}\left(-\frac{i_{1} R_{1}}{R_{1}+R_{2}}+\frac{v_{0}-v_{2}}{R_{1}+R_{2}}\right)
\end{aligned}
$$

b) Because we are dealing with state variables, their values are the same at $t=0^{+}$as at $t=0^{-}$.

At $t=0^{-}, L=$ wire, C_{1} and $C_{2}=o$ pen.

No current flows, so the voltage across R_{1} and R_{2} is $O V$.

We have $-v_{0}$ at the top node, and we have $-v_{0}$ at the top of c_{1} and c_{2}.

So $V_{11}\left(\mathrm{O}^{-}\right)=v_{V_{2}}\left(\mathrm{O}_{\mathrm{N}}^{-}\right)=-v_{0}$

$$
v_{1}\left(0^{+}\right) \quad v_{2}\left(0^{+}\right)
$$

We also have $i_{1}\left(0^{-}\right)=O A$ because C_{1} is open.

$$
\begin{aligned}
& i,\left(0^{+}\right)=0 \mathrm{~A} \\
& v_{1}\left(0^{+}\right)=-v_{0} \\
& v_{2}\left(0^{+}=-v_{0}\right.
\end{aligned}
$$

