Ex:

After being open for a long time, the switch closes at $t=0$.

$$
i_{g}=0.2 \mathrm{~A} \quad R_{1}=50 \Omega \quad R_{2}=12.5 \Omega \quad L=10 \mathrm{mH} \quad C=16 \mu \mathrm{~F}
$$

a) State whether $v(t)$ is under-damped, over-damped, or critically-damped.
b) Write a numerical time-domain expression for $v(t), t>0$, the voltage across C. This expression must not contain any complex numbers.
SoL'N: a) we use the circuit for $t>0$ to find the characteristic roots. If we convert i_{g} and R, into a Thevenin equivalent, we see that R_{1} and R_{2} are in series. Since \angle and C are in series, we have a series $R \angle C$.

$$
\alpha=\frac{R}{2 L}=\frac{50+12.5 \Omega}{2(10 \mathrm{mH})}=3.125 \mathrm{k} / \mathrm{s}
$$

$$
\omega_{0}^{2}=\frac{1}{L C}=\frac{1}{10 m H \cdot 16 \mu \mathrm{~F}}=\frac{1 \mathrm{Gr}}{160} / \mathrm{s}^{2}=\left(\frac{10 \mathrm{kr} / \mathrm{s}}{4}\right)^{2}
$$

$$
S_{1,2}=-3.125 \pm \sqrt{3,125^{2}-2.5^{2}} \mathrm{kr} / \mathrm{s}=-5 \mathrm{kr} / \mathrm{s},-1.25 \mathrm{kr} / \mathrm{s}
$$

ovendamped (real roots)
b) Our form of solution for the overdamped case is

$$
\begin{aligned}
& v(t)=A_{1} e^{s_{1} t}+A_{2} e^{s_{2} t}+A_{3} \\
& A_{3}=v(t \rightarrow \infty)
\end{aligned}
$$

For $t \rightarrow \infty$, we use $L=$ wire, $C=o p e n$

$v(t \rightarrow \infty)$ equals the voltage across
R_{1} since no current flows in R_{2} (so or across R_{2}) owing to C being an open circuit.
is can only flow around the upper left loop. By Ohm's law, the V-drop across R, is $i_{g} R_{1}$.

$$
\begin{aligned}
& \therefore v(t \rightarrow \infty)=i_{g} R_{1}=A_{3} \\
& \text { or } A_{3}=0.2 A \cdot 50 \Omega=10 \mathrm{~V}
\end{aligned}
$$

Now we match our solution to circuit values at $t=0^{+}$:

$$
v\left(0^{+}\right)=A_{1}+A_{2}+\left.A_{3} \quad \frac{d v}{d t}\right|_{t=0^{+}}=s_{1} A_{1}+s_{2} A_{2}
$$

We consider $t=0^{-}$to determine initial values for L and C :
$t=0^{-}$: $L=$ wire, $C=$ open, switch open
Since the switch is open, no current will flow in \angle, so we must have $i_{L}\left(0^{-}\right)=i_{L}\left(O^{+}\right)=O A$.

We are given $v\left(O^{+}\right)=O V$.
At $t=O^{+}$, we treat L as $i-s r e$ and C as v-ste.
$t=0^{+}$:

$$
\begin{aligned}
& v\left(0^{+}\right)=O V=A_{1}+A_{2}+A_{3}=A_{1}+A_{2}+10 V \\
& \left.\frac{d v}{d t}\right|_{t=0^{+}}=\left.\frac{i_{c}}{c}\right|_{t=0^{+}}=0=s_{1} A_{1}+s_{2} A_{2} \\
& \begin{array}{c}
11 \\
-5 k \\
\hline 1.25 k
\end{array}
\end{aligned}
$$

From $2^{\text {nd }}$ eq'n, $A_{2}=-4 A_{1}$.
Substitute into 1 st eg'n:

$$
\begin{aligned}
& A_{1}-4 A_{1}+10 V=0 V, \quad A_{1}=\frac{10 V}{3}, A_{2}=\frac{-40 V}{3} \\
& v(t)=\frac{10}{3} e^{-5 k / 5 \cdot t}-\frac{40}{3} e^{-1.25 k / s-t^{3}}+10 \mathrm{~V}
\end{aligned}
$$

