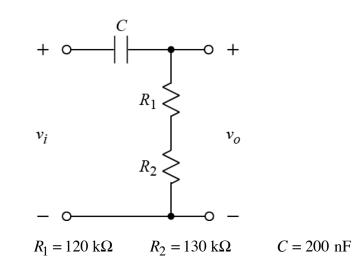
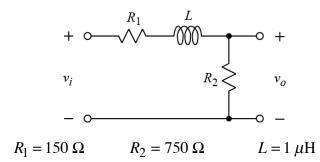


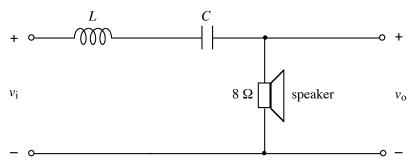
1.


2.

a) Determine the transfer function V_0/V_i .

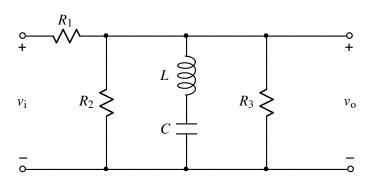
b) Plot $|H(j\omega)| \equiv |V_0 / V_i|$ versus ω .


c) Find the value of ω where $|\operatorname{Re}(H(j\omega))| = |\operatorname{Im}(H(j\omega))|$.


- a) Determine the transfer function V_0/V_i .
- b) Find ω such that $|V_o / V_i| = 1 / \sqrt{2}$.

c) Find
$$\omega$$
 such that $\angle V_o / V_i = 45^\circ$.

d) Is it true that
$$\left|\frac{1}{j\omega C}\right| = |R_1 + R_2|$$
 at $\omega = \omega_C$?


- a) Determine the transfer function V_0/V_1 . **Hint:** switch the order of R_1 and L and use a voltage divider.
- b) Express the maximum of $|V_0 / V_i|$ as a function of R_1 and R_2 .

The above circuit is part of a simple crossover network for driving a midrange speaker having an impedance of $\$\Omega$. The circuit is described at the following web site: http://www.termpro.com/articles/xover2.html. A more in-depth discussion of crossover networks may be found at http://sound.westhost.com/lr-passive.htm.

a) The web site describing the above bandpass filter suggests using cutoff frequencies of $f_{C1} = 130$ Hz and $f_{C2} = 4$ kHz. Determine the L and C values that yield these cutoff frequencies.

b) Plot $|V_0/V_i|$ versus ω .

 $R_1 = 18 \Omega$ $R_2 = 48 \Omega$ $R_3 = 144 \Omega$ $C = 31.25 \mu F$ L = 2 mH

a) What type of filter is the above circuit: a band-pass or a band-reject?Hint: Use a Thevenin equivalent to combine all the R's into one.

4.