ĽT

1.

Given the resistor connected as shown and using not more than one each R, L, and C in the dashed-line box, design a circuit to go in the dashed-line box that will produce the **band-pass** $|H(j\omega)|$ vs. ω shown above. That is:

 $\max_{\omega} |H(j\omega)| = \frac{1}{4} \text{ and occurs at } \omega_0 = 10 \text{ M r/s}$

The bandwidth, β , of the filter is 500k r/s.

$$|H(j\omega)| = 0$$
 at $\omega = 0$ and $\lim_{\omega \to \infty} |H(j\omega)| = 0$

One period, T, of a function v(t) is shown above. The formula for v(t) is

$$v(t) = \begin{cases} 4 V & 0 < t < T / 4 \\ 0 V & T / 4 < t < T / 2 \\ 4 V & T / 2 < t < T \end{cases}$$

Find the numerical value of the following coefficients of the Fourier series for v(t):

a)
$$a_V$$
 b) a_2

3. Find the value of b_2 and b_4 for the Fourier series in problem 2.

4.

For the above circuit, determine the transfer function $H(j\omega) = V_0/V_i$. Assume the circuit in problem 4, has the following input signal:

5.

$$v_i(t) = -4 + 2\sum_{k=1}^{\infty} \frac{1}{k^2 + 1} \sin(k\omega_0 t) V$$

Note: $\omega_0 = \frac{10}{3}$ M r/s for the Fourier series.

Write the time-domain expression of the third harmonic (i.e., k = 3) of $v_0(t)$.