1.

Given the resistor connected as shown and using not more than one each R, L, and C in the dashed-line box, design a circuit to go in the dashed-line box that will produce the band-pass $|\mathrm{H}(j \omega)|$ vs. ω shown above. That is:

$$
\max _{\omega}|H(j \omega)|=\frac{1}{4} \text { and occurs at } \omega_{0}=10 \mathrm{Mr} \mathrm{~s}
$$

The bandwidth, β, of the filter is $500 \mathrm{kr} / \mathrm{s}$.

$$
|H(j \omega)|=0 \text { at } \omega=0 \quad \text { and } \quad \lim _{\omega \rightarrow \infty}|H(j \omega)|=0
$$

2.

One period, T, of a function $v(t)$ is shown above. The formula for $v(t)$ is

$$
v(t)=\left\{\begin{array}{cc}
4 \mathrm{~V} & 0<t<T / 4 \\
0 \mathrm{~V} & T / 4<t<T / 2 \\
4 \mathrm{~V} & T / 2<t<T
\end{array}\right.
$$

Find the numerical value of the following coefficients of the Fourier series for $v(t)$:
a) a_{v}
b) a_{2}
3. Find the value of b_{2} and b_{4} for the Fourier series in problem 2.
4.

For the above circuit, determine the transfer function $\mathrm{H}(j \omega)=\mathrm{V}_{\mathrm{o}} / \mathrm{V}_{\mathrm{i}}$.
5. Assume the circuit in problem 4, has the following input signal:

$$
v_{i}(t)=-4+2 \sum_{k=1}^{\infty} \frac{1}{k^{2}+1} \sin \left(k \omega_{0} t\right) \mathrm{V}
$$

Note: $\omega_{0}=\frac{10}{3} \mathrm{Mr}$ r/s for the Fourier series.
Write the time-domain expression of the third harmonic (i.e., $k=3$) of $v_{\mathrm{o}}(t)$.

