Ex:

Given the resistor connected as shown and using not more than one each R, L, and C in the dashed-line box, design a circuit to go in the dashed-line box that will produce the band-pass $|\mathrm{H}(j \omega)|$ vs. ω shown above. That is:
$\max _{\omega}|H(j \omega)|=\frac{1}{4}$ and occurs at $\omega_{0}=10 \mathrm{Mr} / \mathrm{s}$
The bandwidth, β, of the filter is $500 \mathrm{kr} / \mathrm{s}$.

$$
|H(j \omega)|=0 \text { at } \omega=0 \quad \text { and } \quad \lim _{\omega \rightarrow \infty}|H(j \omega)|=0
$$

SOL'N: To achieve the peak at ω_{0}, we may use a series LC in the top rail or a parallel LC from the top to bottom rail. To achieve a gain of $1 / 4$ at ω_{0}, we must use a vertical resistance to form a V-divider with R. $v_{i} \pm R_{1} \begin{cases}v_{0} & R_{1} \\ R+R_{1} & =\frac{1}{4}, \\ 3 R_{1}=R=300 \Omega \\ R_{1}=100 \Omega\end{cases}$

We have two possible circuit configurations:

Note: R_{1} must be to the right of L and C in order to have any effect from the L and C in the series configuration.

For the series configuration, the L and C are to act like a wire at $\omega_{0}=10 \mathrm{M} \mathrm{r} / \mathrm{s}$.

$$
j \omega_{0} L+\frac{1}{j \omega_{0} C}=0 \quad \text { or } \quad \omega_{0}^{2}=(10 M r / s)^{2}=\frac{1}{L C}
$$

The bandwidth when using a series L and C is

$$
\beta=\frac{R_{e 9}}{L}=500 \mathrm{kr} / \mathrm{s}
$$

To determine the value of R_{28}, we view the filter as a standard RLC filter and a V-divider:

$$
\begin{aligned}
& j \omega L \text { j } \overline{\omega c}
\end{aligned}
$$

The cutoff frequencies for $H(j \omega)$ are the same as the cutoff frequencies for $H^{\prime}(j \omega)$:

$$
\omega_{\mathrm{C} 1,2}= \pm \frac{R_{\mathrm{Re}}}{2 L}+\sqrt{\left(\frac{R_{e g}}{2 L}\right)^{2}+\omega_{0}^{2}}, \quad \beta=\frac{R_{\mathrm{eg}}}{L}
$$

where $R_{\text {eq }}=R+R_{1}=400 \Omega$
Using $\beta=R_{*} / L$, we find L :

$$
L=\frac{R_{e D}}{\beta}=\frac{400 \mathrm{~g}}{500 \mathrm{kr} / 3}=0.8 \mathrm{mH} \text { or } 800 \mu \mathrm{H}
$$

$u_{\text {sing }} \omega_{0}^{2}=\frac{1}{L C}$ and $L=800 \mu H_{2}$ we find C :

$$
\begin{aligned}
& C=\frac{1}{\omega_{0}^{2} L}=\frac{1 F F}{10 M \cdot 1044 \cdot 800 \mu}=\frac{1 \mu F}{80 k} \\
& C=12.5 \mathrm{pF}
\end{aligned}
$$

Summary of series RLC: $R_{1}=100 \Omega, L=800 \mu \mathrm{H}, \mathrm{C}=12.5 \mathrm{~F}$

For the parallel configuration, we move R_{1} to the left of L and C and use a Therenin

To find the Therenin equivalent, we find $V_{T h}$ by finding the open-circuitiof the V_{i}, R, and R_{t} circuit.

$$
V_{i} \overbrace{=100 \Omega}^{R_{1}} \sum_{0}^{R=300 \Omega}+V_{T h}=V_{i} \frac{R_{1}}{R_{1}+R}=\frac{V_{i}}{4}
$$

To find $R_{T h}$, we turn off V_{i} and look in from terminals a and b. The resistance seen is

$$
R_{T h}=R / / R_{1}=300 \Omega \| / 100 \Omega=75 \Omega
$$

Using the filter with the Thevenin equivalent, we have

$$
H(j \omega)=\frac{V_{0}}{V_{i}}=\frac{R_{1}}{R+R_{1}} \frac{V_{0}}{V_{i}^{\prime}}=\frac{1}{4} H^{\prime}(j \omega)
$$

where $H^{\prime}(j \omega) \equiv \frac{V_{0}}{V_{i}}$, where $V_{i}^{\prime} \equiv \frac{R_{1}}{R+R_{1}} V_{i}$
The cutoff frequencies of $H^{\prime}(j w)$ are the same as the cutoff frequencies of $H(j \omega)$.

$$
\begin{aligned}
\omega_{C 1,2}= \pm \frac{1}{2 R T}+\sqrt{\left(\frac{1}{2 R C}\right)^{2}+\omega_{0}^{2}}, \beta & =\frac{1}{R C} \\
\omega_{0}^{2} & =\frac{1}{L C}
\end{aligned}
$$

Using $R_{\text {rh }}$ and β, we find C :

$$
C=\frac{1}{R \beta}=\frac{1}{75 \Omega \cdot 500 \mathrm{kr} / \mathrm{s}}=26.6 \mathrm{nF}
$$

Using L and ω_{0}^{2}, we find L :

$$
L=\frac{1}{\omega_{0}^{2} C}=\frac{1}{10 M 10 M 26.6 n}=375 \mathrm{nH}
$$

