Ex:

One period, T, of a function $v(t)$ is shown above. The formula for $v(t)$ is

$$
v(t)=\left\{\begin{array}{cc}
4 \mathrm{~V} & 0<t<T / 4 \\
0 \mathrm{~V} & T / 4<t<T / 2 \\
4 \mathrm{~V} & T / 2<t<T
\end{array}\right.
$$

Find the numerical value of the following coefficients of the Fourier series for $v(t)$:
a) a_{v}
b) a_{2}
c) b_{2}
d) $\quad b_{4}$

SoL'N: a) $a_{\nu}=$ ave value of $v(t)=\frac{1}{T} \int_{0}^{T} v(t) d t$ $=\frac{1}{T}$ area under $v(t)$
$=\frac{1}{T}\left(4 v \cdot \frac{T}{4}+4 v \cdot \frac{T}{2}\right)$
$a_{\nu}=3 V$ (or imagine $v(t)$ spread out to
b) $a_{2}=2 \int_{0}^{T} v(t)$ a uniform height)
b) $a_{2}=\frac{2}{T} \int_{0}^{T} v(t) \cos \left(2 \omega_{0} t\right) d t$ where $\omega_{0}=\frac{2 \pi}{T}$ We draw a picture of $v(t) \cos \left(\omega_{0} t\right)$ and see what the area under the curve, (i.e., the integral),is.

The areas all cancel out. $\therefore a_{2}=0 v$
c) $b_{2}=\frac{z}{T} \int_{0}^{T} v(t) \sin \left(2 \omega_{0} t\right) d t, \quad \omega_{0}=\frac{2 \pi}{T}$

We draw a picture of $t(t) \sin \left(2 \omega_{0} t\right)$ and see what the area under the curve is.

Areas cancel out
We only need the first area:

$$
\begin{aligned}
b_{2} & =\frac{2}{T} \int_{0}^{T / 4} 4 V \cdot \sin \left(2 \omega_{0} t\right) d t \\
& =\frac{2}{T} \cdot 4 V\left(\left.\frac{\left.-\cos \left(2 \omega_{0} t\right)\right)}{2 \omega_{0}}\right|_{0} ^{T / 4}, \omega_{0}=\frac{2 \pi}{T}\right. \\
& =\left.\frac{2}{T} \cdot \frac{2}{7}\left(\frac{-\cos \left(2 \cdot \frac{2 \pi}{T} t\right)}{2 \cdot \frac{\pi \pi}{T}}\right)\right|_{0} ^{T / 4} \\
& =\frac{2}{\pi} V(-\cos \pi-\cos 0) \\
b_{2} & =\frac{4}{\pi} V
\end{aligned}
$$

d) $b_{4}=\frac{2}{T} \int_{0}^{T} v(t) \sin \left(4 \omega_{0} t\right) d t$
picture:

All the areas cancel out.

$$
\therefore b_{4}=0 v
$$

