Ex:

a) Calculate the value of rms current, $\mathbf{I}_{\mathrm{rms}}$, flowing down through the dashed box.
b) Calculate the complex power, S, for the circuitry inside the dashed box.
so ('n: a) $\quad I_{r m s}=\frac{V_{s}}{\sqrt{2}} \frac{1}{z_{\text {tot }}}=\frac{160<0^{\circ} v}{\sqrt{2}} \frac{1}{z_{\text {tot }}}$
We divide V_{s} by $\sqrt{2}$ to convert to rms.

$$
z_{t o t}=-j 20 \Omega+8 \Omega+10 \Omega \|_{j 20 \Omega}
$$

$$
\text { where } 10 \Omega\|j z 0 \Omega=10 \Omega \cdot 1\| i^{2}
$$

$$
=10 \Omega \frac{j z}{1+j^{2}} \frac{1-j z}{1-j 2}=\frac{10 \Omega(4+j 2)}{5}
$$

$$
=2(4+j 2) \Omega=8+j 4 \Omega
$$

$$
z_{\text {tot }}=-j 20 \Omega+8 \Omega+8 \Omega+j 4 \Omega=16-j 16 \Omega
$$

$$
\begin{aligned}
I_{r m s} & =\frac{160<0^{\circ} V_{m \omega} \frac{1}{\sqrt{2}},}{16-j 16 \Omega} \\
& =160
\end{aligned}
$$

$$
n=\frac{160}{\sqrt{2}} \frac{1}{16 \sqrt{2}<-45^{\circ}} A_{r m s}
$$

$$
"=\frac{160}{32}<45^{\circ} A_{\mathrm{rms}}
$$

$$
I_{r m s}=5<45^{\circ} A_{\text {rms }}
$$

$$
\text { b) } \begin{aligned}
S & =\left|\mathbb{I}_{r m s}\right|^{2} z \\
& =5^{2} \cdot(8+j 4) V A \\
S & =200+j 100 \quad V A
\end{aligned}
$$

