Each student must make one oral presentation in lab during the semester.
Each presentation will last five minutes and will be made in the order listed at the beginning of the lab session. The presentations will describe work performed the previous week in lab by way of review. Practice your talk and be succinct. Stick to the five-minute time frame.

Week 2 of lab:
Presentation 1.1: Launcher circuit overview
a) Explain that your presentation will describe the qualitative behavior of the launcher circuit.
b) Draw Fig. 2 from Lab 1 on the board. Point out that the L and R_{S} in the circuit are for the coil that you will wind that actually launches the paper clip.
c) Show the students what a would coil looks like, and make the observation that we want to charge the coil quickly to draw the paper clip into the coil and then discharge it quickly so the accelerated paper clip will continue moving instead of being drawn back into the coil after it passes the center point.
d) Draw a plot showing the general shape of the current versus time that we want to have. (This plot will start at zero, rise like an RC charging curve that rises steeply, then rolls over to horizontal, then starts to roll down, then looks like an exponential decay toward zero at time approaching infinity.
e) With the plot of current versus time on the board, comment on the initial conditions and behavior of the circuit: C is charged to $30 \mathrm{~V}, \mathrm{i}_{\mathrm{L}}=0 \mathrm{~A}$ immediately before and after the switch moves, and the voltage on the capacitor will start to push current through the L from left to right as time increases.
f) Conclude by observing that having the current rise and fall only once and stay positive is more efficient than having the having the current passing through zero many times, as it would if the current oscillated positive and negative as it died out. On the other hand, overdamping would slow the fall time. So critical damping is the best solution.
Presentation 1.2: Launcher circuit differential equation
a) Explain that your presentation will discuss the differential equation for the circuit used in Lab 1.
b) Draw Fig. 2 from Lab 1 on the board.
c) Write the component equations for R, L, and C on the board:
$v_{R}=i R \quad v_{L}=L \frac{d i_{L}(t)}{d t} \quad i_{C}(t)=C \frac{d v_{C}(t)}{d t}$
d) Show how to derive the differential equation for the circuit by summing the voltages around the loop and expressing each voltage as a function of the same current, i.
e) Conclude by writing the differential equation and noting that the solutions are of form $\mathrm{Ae}^{s t}$ where s may be real or complex. (You may also wish to note that for critical damping we also get a solution of form tAe ${ }^{\text {st }}$.)

Presentation 1.3: Waveforms for $\mathrm{C}=2000 \mathrm{nF}$ and $\mathrm{C}=2000 \mu \mathrm{~F}$
a) Explain that your presentation will describe the waveforms for the launcher circuit with $\mathrm{C}=2000 \mathrm{nF}$ and $\mathrm{C}=2000 \mu \mathrm{~F}$.
b) Write down the equations for α and ω_{o} in terms of R, L, and C for a series RLC circuit.
c) Comment on why C only affects ω_{0}.
d) Write down the formula for the characteristic roots in terms of α and ω_{0}, and comment on whether a larger C or a smaller C causes overdamping.
e) By analyzing $\alpha^{2}-\omega_{0}^{2}$, show why a larger value of L moves the circuit behavior toward an underdamped solution.
f) Conclude your presentation by noting that $\mathrm{C}=2000 \mathrm{nF}$ and $\mathrm{C}=2000 \mu \mathrm{~F}$ should give under- and over-damped solutions for the values of L and R_{s} that are typical for the coil.

Week 3 of lab:
Presentation 1.4: Overview of third-order circuit
a) Explain that your presentation will describe the qualitative behavior of the third-order circuit in Fig. 3 of Lab 1.
b) Draw the circuit in Fig. 3 of Lab 1 on the board but switch the positions of R_{2} and C_{2}. (R_{2} and C_{2} will still be in parallel and connected to the top and bottom wires.)
c) Point out that one may replace v_{g}, R_{2}, and R_{3} with a Thevenin equivalent. Draw the resulting circuit on the board. $\left(V_{T h e v}=v_{g} \cdot R_{2} /\left(R_{2}+R_{3}\right)\right.$ and $\left.R_{\text {Thev }}=R_{2} \| R_{3}.\right)$
d) Observe that without R_{1}, L, and C_{1}, the circuit would be just an $R C$ circuit, with C_{2} charging up exponentially to $\mathrm{V}_{\text {Thev }}$. Follow this idea up by pointing out that, even with the other components in the circuit, C_{2} will ultimately charge up to $\mathrm{V}_{\text {Thev }}$. Thus, we expect to see something vaguely like an $R C$ charging curve for v_{2}.
e) Analyze the right side of the circuit consisting of R_{1}, L , and C_{1} as a series resonant circuit. By calculating $\alpha^{2}-\omega_{0}^{2}$, show that you get an underdamped solution. Point out that the current this part of the circuit draws away from the charging of C_{2} would tend to oscillate and be seen as ripples superimposed on the charging curve for C_{2}.
f) Conclude your presentation by drawing an RC charging curve with some extra up and down ripples occurring during the charging process. Comment that, from the preceding analysis, this waveform is similar to what we might expect to see for v_{2}.

Presentation 1.5: State-variable equations for third-order circuit
a) Explain that your presentation will show the derivation of the state-variable equations for the third-order circuit in Fig 3 of Lab 1.
b) Draw the circuit in Fig. 3 of Lab 1 on the board.
c) State that state variables are always the variables used to calculate energy stored in C's and L's: v_{c} 's and i_{L} 's.
d) Explain that the rules for writing state-variable equations require the left sides of equations to be the first derivatives of state variables (and nothing else) and the right sides of equations to be expressions containing only state variables (no derivatives), component values, and source values.
e) Show how to translate the derivative of a state variable into a non-derivative by employing the component equations: $\mathrm{dv}_{\mathrm{c}} / \mathrm{dt}=\mathrm{i}_{\mathrm{C}} / \mathrm{C}$ or $\mathrm{di}_{\mathrm{L}} / \mathrm{dt}=\mathrm{v}_{\mathrm{L}} / \mathrm{L}$.
f) Write down the state variable equations for the third-order circuit and explain how you derived them from circuit laws by referring to the circuit diagram and using current summations at nodes or voltages around loops.
f) Conclude your presentation by noting that the format of the state-variable equations allows for either a matrix differential equation solution as studied in Math 2250 or a numerical solution as used in Lab 1.

Presentation 1.6: Practical considerations for building and testing third-order circuit
a) Explain that your presentation will give a step-by-step procedure for building and testing the third-order circuit in Fig. 3 of Lab 1.
b) Draw the circuit in Fig. 3 of Lab 1 on the board.
c) Start a new drawing next to the complete circuit that shows just $\mathrm{v}_{\mathrm{g}}, \mathrm{R}_{3}$ and C_{2}. Suggest that this is the first circuit the students should build. Observe that this first circuit would be just an $R C$ circuit, with C_{2} charging up exponentially to v_{g}. Draw the expected waveform for v_{2}, using the time constant $\mathrm{R}_{3} \mathrm{C}_{2}=52 \mu \mathrm{~s}$.
d) Now add R_{2} to the circuit and suggest that this is the second circuit the students should build. Comment that using the Thevenin equivalent of v_{g}, R_{2}, and R_{3} reduces the circuit once again to an RC circuit. Draw the expected exponential charging waveform for v_{2} using the new time constant $\mathrm{R}_{\text {Thev }} \mathrm{C}_{2}$ where $\mathrm{R}_{\text {Thev }}=\mathrm{R}_{2} \| \mathrm{R}_{3}$.
e) Now draw the complete circuit with L and C_{1} replaced by wires and suggest that this is the third circuit the students should build. Observe that this circuit will also give an RC charging curve for v_{2}. The time constant of charging will now be $R_{1}\left\|R_{2}\right\| R_{3} \cdot C_{2}$. Sketch this charging curve.
f) Conclude your presentation by commenting that adding L and C_{1} to complete the circuit should be easy to do after the preceding steps and that the suggested procedure provides a way of verifying the circuit as it is built. This allows mistakes to be quickly found and corrected.

