ECE2260
Lab3 – Notebook Point Breakdown

Communications (Keeping a Proper Notebook) 30 Points Total
- Written in Ink ... 4
- Student Signed every page ... 4
- Student Dated every page .. 4
- TA Signature for every lab session (-3 each session missed) ... 6
- Student’s work Reproducible from notebook 12

1. **Component Measurements 10 Points Total**
 - Table of Components (Measured Values L and Ro) 10

2. **Circuit Design 20 Points Total**
 2.1. Equations:
 - $V_i(s)$ Laplace transform ... 1
 - Laplace transform and init cond for C's 1
 - Laplace transform and init cond for R's and L 1
 - $V_0(s)$ expression .. 1
 - $V_1(s)$ expression .. 1
 - Inverse transform of $V_0(s)$ 4
 - Inverse transform of $V_1(s)$ 4
 2.2. Circuit parameters:
 - Component values derivation 2
 - Component values ... 1
 2.3. Double Spiral:
 - Matlab plot of expected spiral x-y plot $v_1(t)$ vs $v_0(t)$ 2
 - Matlab code listing ... 2

3. **Measurements 20 Points Total**
 3.1 Construction:
 - Schematic of constructed circuit with component values 2
 3.2. Display $v_0(t)$ and $v_1(t)$:
 - notes on debugging circuit ... 1
 3.3. Display the spirals:
 - sketch of spiral $v_1(t)$ vs $v_0(t)$ from oscilloscope 3
 3.4. Measure $v_0(t)$ and $v_1(t)$ versus time:
 - derivation of how values derived from oscilloscope waveform 6
 - measured values alpha, beta, a, b, c, and psi 6
 - measured component values R1, R2, R3, C1, C2 2

4. **Comparison of Calculated and Measured Results 15 Points Total**
 4.1. Calculations with measured component values:
 - Matlab plot of calculated and actual $v_0(t)$ versus time 3
 - Matlab plot of calculated and actual $v_1(t)$ versus time 3
 - Matlab code listing for plot .. 3
 4.2. Spirals:
 - Comparison plot of calculated and measured spirals $v_0(t)$ vs $v_1(t)$ 3
 - Matlab code listing for plot .. 3

5. **Conclusions 5 Points Total**