1. (50 points)

After having been open for a long time, the switch is closed at $t=0$.
$\mathrm{R}_{1}=12.5 \Omega$
$\mathrm{R}_{2}=12.5 \Omega$
$\mathrm{L}=6.25 \mu \mathrm{H}$
a. Two capacitances are available: 2 nF and 250 nF . Specify the value of C that will make $v(t)$ overdamped.
b. Using the value of C found in (a), write a time-domain expression for $\mathrm{v}(\mathrm{t})$.
2. (50 points)

a. Determine the coefficients of the Fourier series, a_{v}, a_{n}, and b_{n}, for the periodic waveform $\mathrm{v}_{\mathrm{i}}(\mathrm{t})$. Also, use these Fourier coefficients to find the coefficients of the first five terms of the Fourier series written in terms of inverse phasors:
$v_{1}(t)=a_{v}+\sum_{n=1}^{\infty} A_{n} \cos \left(n \omega_{\mathrm{o}} t+\theta_{n}\right)$
Note any symmetry properties of the waveform that you use to determine coefficients.
b. The circuit on the left is a filter with output $\mathrm{v}_{\mathrm{O}}(\mathrm{t})$. Design a circuit to be placed in the box such that the filter rejects the fundamental frequency of $\mathrm{v}_{\mathrm{i}}(\mathrm{t})$ and has a bandwidth of $10,000 \mathrm{rad} / \mathrm{sec}$. Specify the component values. Show how the components are connected in the circuit.
3. (50 points)

The initial energy stored in the circuit is zero.

$$
\mathrm{R}_{2}=500 \Omega \quad \mathrm{~L}=200 \mathrm{mH}
$$

a. Choose values of R_{1} and C to accomplish the following:
(1) $\mathrm{v}(\mathrm{t})$ and $\mathrm{i}(\mathrm{t})$ are decaying sinusoids 90° out of phase with each other.
(2) $1 / \alpha=T$, where α is the exponential decay constant and T is the period of oscillation of the decaying sinusoid.
b. With the component values you chose in the circuit, write numerical expressions for $v(t)$ and $i(t)$.
4. (50 points)

$$
\mathrm{Z}_{1}=(5-\mathrm{j} 5) \Omega \quad \mathrm{Z}_{2}=(20+\mathrm{j} 20) \Omega
$$

a. Find the input impedance, $\mathrm{z}_{\mathrm{in}}=\mathbf{V}_{1} / \mathbf{I}_{1}$, for the above circuit.
b. Using z_{in} from (a), find a numerical expression for \mathbf{V}_{AB} in the circuit below.

Balanced three-phase system.

$$
\mathbf{V}_{\mathrm{an}}=52 \angle 0^{\circ} \mathrm{V} \quad \mathbf{V}_{\mathrm{bn}}=52 \angle-120^{\circ} \mathrm{A} \quad \mathrm{z}_{\text {line }}=\mathrm{j} 12 \Omega
$$

