1. (50 points)

After having been open for a long time, the switch is closed at $\mathrm{t}=0$.

$$
\mathrm{R}_{1}=12.5 \Omega \quad \mathrm{R}_{2}=12.5 \Omega \quad \mathrm{~L}=6.25 \mu \mathrm{H}
$$

a. Two capacitances are available: 250 nF and 2 nF . Specify the value of C that will make $\mathrm{v}(\mathrm{t})$ overdamped.
b. Using the value of C found in (a), write a time-domain expression for $\mathrm{v}(\mathrm{t})$.
ans: a) $\quad \mathrm{C}=250 \mathrm{nF}$
b) $\mathrm{v}(\mathrm{t})=13.3\left(\mathrm{e}^{-0.4 \mathrm{Mt}}-\mathrm{e}^{-1.6 \mathrm{Mt}}\right) \mathrm{V}$
sol'n: (a) To make the response overdamped, we must have two real characteristic roots. We use the circuit for $t>0$, consisting of C, R_{1}, L, and v_{A} in series. We may find the characteristic equation by looking it up in a textbook or by setting the impedance of $\mathrm{R}_{1}, \mathrm{C}$, and L in series to zero.

$$
z=R_{1}+\frac{1}{s C}+s L=s^{2}+\frac{R_{1}}{L} s+\frac{1}{L C}=0
$$

The characteristic roots for the quadratic equation are

$$
s_{1,2}=-\frac{R}{2 L} \pm \sqrt{\left(\frac{R}{2 L}\right)^{2}-\frac{1}{L C}}
$$

or

$$
s_{1,2}=-\alpha \pm \sqrt{\alpha^{2}-\omega_{\mathrm{o}}^{2}} \quad \alpha \equiv \frac{R}{2 L} \quad \omega_{\mathrm{o}} \equiv \frac{1}{\sqrt{L C}}
$$

We want an overdamped response, (real roots $\alpha^{2}>\omega_{0}{ }^{2}$).

$$
\alpha=\frac{R}{2 L}=\frac{12.5 \Omega}{(2) 6.25 \mu \mathrm{H}}=\frac{12.5}{12.5} \mathrm{M} \mathrm{rad} / \mathrm{s}=1 \mathrm{M} \mathrm{rad} / \mathrm{s}
$$

Try each C value in turn.

$$
\begin{aligned}
\mathrm{C}= & 2 \mathrm{nF}: \\
& \omega_{\mathrm{o}}=\frac{1}{\sqrt{6.25 \mu \mathrm{H} \cdot 2 \mathrm{nF}}}=\frac{1}{\sqrt{12.5 \mathrm{~m} \cdot 1 \mu}}=\frac{1 \mathrm{M}}{1.1118} \mathrm{rad} / \mathrm{s} \\
& \omega_{\mathrm{O}}=8.9 \mathrm{M} \mathrm{rad} / \mathrm{s}>\alpha^{2} \text { (underdamped) } \\
\mathrm{C}= & 250 \mathrm{nF}: \\
& \omega_{\mathrm{o}}=\frac{1}{\sqrt{6.25 \mu \mathrm{H} \cdot 250 \mathrm{nF}}}=\frac{1}{\sqrt{1562.5 \mathrm{~m} \cdot 1 \mu}}=\frac{1 \mathrm{M}}{1.25} \mathrm{rad} / \mathrm{s} \\
& \omega_{\mathrm{o}}=0.8 \mathrm{M} \mathrm{rad} / \mathrm{s}<\alpha^{2} \text { (overdamped) }
\end{aligned}
$$

We need $\mathrm{C}=250 \mathrm{nF}$ for an overdamped solution.
sol'n: (b) We use the exponential solution for the overdamped case:

$$
v(t)=A_{1} e^{s_{1} t}+A_{2} e^{s_{2} t}+A_{3}
$$

Because the value of A_{3} is all that is left of $v(t)$ as $t \rightarrow \infty$, we first find the constant term, A_{3}. (The other terms decay because the characteristic roots always have negative real parts in a passive RLC circuit. When the switch opens, the energy sloshing back and forth in the L and C will decay owing to power dissipated by the series resistor R_{1}.)

As $t \rightarrow \infty$, the circuit reaches equilibrium. C acts like an open circuit, L acts like a short circuit or wire.

Model:

Since L acts like a wire, there is no voltage drop across it.
Thus, $\mathrm{A}_{3}=\mathrm{v}(\mathrm{t} \rightarrow \infty)=0$.
We find coefficients A_{1} and A_{2} by matching initial conditions in the circuit. We find initial conditions by examining the circuit at $\mathrm{t}=0^{-}$, when the circuit has reached equilibrium. We find the values of i_{L} and v_{C}, the energy variables, at $\mathrm{t}=0^{-}$and use the same values at $\mathrm{t}=0^{+}$(since the energy in the circuit cannot change instantly).

Mathematically, our general form of solution for the overdamped case gives the following values for $\mathrm{v}\left(0^{+}\right)$and $\mathrm{dv}(\mathrm{t}) /\left.\mathrm{dt}\right|_{\mathrm{t}=0+}$:

$$
\begin{aligned}
& v\left(0^{+}\right)=A_{1}+A_{2}+A_{3}=A_{1}+A_{2} \\
& \left.\frac{d v(t)}{d t}\right|_{t=0^{+}}=A_{1} s_{1}+A_{2} s_{2}
\end{aligned}
$$

Note: We must always differentiate first and then plug in $\mathrm{t}=0^{+}$. Otherwise, we always get zero.

Now we find the numerical values of $v\left(0^{+}\right)$and $d v(t) /\left.d t\right|_{t=0+}$.
At $\mathrm{t}=0^{-}, \mathrm{C}$ acts like an open circuit and L acts like a short circuit.
Model:

$i_{L}\left(0^{-}\right)=\frac{100 \mathrm{~V}}{25 \Omega}=4 \mathrm{~A}$
$v_{C}\left(0^{-}\right)=100 \mathrm{~V} \cdot \frac{12.5 \Omega}{25 \Omega}=50 \mathrm{~V}$
At time $\mathrm{t}=0^{+}$, we have $\mathrm{i}_{\mathrm{L}}\left(0^{+}\right)=\mathrm{i}_{\mathrm{L}}\left(0^{-}\right)=4 \mathrm{~A}$ and $\mathrm{v}_{\mathrm{C}}\left(0^{+}\right)=\mathrm{v}_{\mathrm{C}}\left(0^{-}\right)=50 \mathrm{~V}$. We solve the circuit at $t=0^{+}$, treating $i_{L}\left(0^{+}\right)$as a current source and $\mathrm{v}_{\mathrm{C}}\left(0^{+}\right)$ as a voltage source.

We now solve for $v\left(0^{+}\right)$and $d v(t) /\left.d t\right|_{t=0+}$. From these we find A_{1} and A_{2}.
Model:

We may apply any standard method to solve the circuit, but we can solve the above circuit using a voltage loop.

$$
v\left(0^{+}\right)=v_{A}-i_{L}\left(0^{+}\right) R_{1}-v_{C}\left(0^{+}\right)=100 \mathrm{~V}-4 \mathrm{~A} \cdot 12.5 \Omega-50 \mathrm{~V}=0 \mathrm{~V}
$$

The same equation applies for $t>0$, and we may differentiate to find $d v(t) / d t$ in terms of energy (or state) variables i_{L} and v_{C}.

$$
\begin{aligned}
& v(t)=v_{A}-i_{L}(t) R_{1}-v_{C}(t) \\
& \frac{d v(t)}{d t}=-\frac{d i_{L}(t)}{d t} R_{1}-\frac{d v_{C}(t)}{d t}
\end{aligned}
$$

The basic equations for L and C , rearranged, allow us to translate the derivatives on the right side of this equation into non-derivatives we can calculate numerically.

$$
\begin{aligned}
& \frac{d i_{L}(t)}{d t}=\frac{1}{L} v_{L}(t) \\
& \frac{d v_{C}(t)}{d t}=\frac{1}{C} i_{C}(t)
\end{aligned}
$$

Applying these identities, we have

$$
\frac{d v(t)}{d t}=-\frac{1}{L} v_{L}(t) R_{1}-\frac{1}{C} i_{C}(t)
$$

Only now that we have differentiated do we finally evaluate the derivative we seek at $\mathrm{t}=0$:

$$
\begin{aligned}
\left.\frac{d v(t)}{d t}\right|_{t=0^{+}} & =-\frac{1}{L} v_{L}\left(0^{+}\right) R_{1}-\frac{1}{C} i_{C}\left(0^{+}\right) \\
\left.\frac{d v(t)}{d t}\right|_{t=0^{+}} & =-\frac{1}{6.25 \mu \mathrm{H}} \cdot 0 \mathrm{~V} \cdot 12.5 \Omega-\frac{1}{250 \mathrm{nF}} i_{C}\left(0^{+}\right) .
\end{aligned}
$$

Since i_{C} is in series with i_{L}, we have $\mathrm{i}_{\mathrm{C}}\left(0^{+}\right)=\mathrm{i}_{\mathrm{L}}\left(0^{+}\right)=4 \mathrm{~A}$.

$$
\left.\frac{d v(t)}{d t}\right|_{t=0^{+}}=-\frac{4 A}{250 \mathrm{nF}}=-16 \mathrm{MV} / \mathrm{s}
$$

Now we find A_{1} and A_{2}.

$$
\begin{aligned}
& v\left(0^{+}\right)=0=A_{1}+A_{2} \Rightarrow A_{2}=-A_{1} \\
& \left.\frac{d v(t)}{d t}\right|_{t=0^{+}}=-16 \mathrm{MV} / \mathrm{s}=A_{1} s_{1}+A_{2} s_{2}=A_{1}\left(s_{1}-s_{2}\right) .
\end{aligned}
$$

$$
\begin{aligned}
s_{1}-s_{2} & =-\alpha+\sqrt{\alpha^{2}-\omega_{\mathrm{o}}^{2}}-\left(-\alpha-\sqrt{\alpha^{2}-\omega_{\mathrm{o}}^{2}}\right) \\
& =2 \sqrt{\alpha^{2}-\omega_{\mathrm{o}}^{2}} \\
& =2 \sqrt{(1 M)^{2}-(0.8 M)^{2}} \\
& =(2) 0.6 M=1.2 M
\end{aligned}
$$

Concluding the algebra, we find the numerical values of the coefficients A_{1} and A_{2}.

$$
\begin{aligned}
& A_{1}=\frac{16 \mathrm{M} \mathrm{v} / \mathrm{s}}{1.2 \mathrm{M}}=13.3 \mathrm{v} / \mathrm{s} \\
& A_{2}=-13.3 \mathrm{v} / \mathrm{s}
\end{aligned}
$$

Using the values of α and ω_{0} from above, we find the values of s_{1} and s_{2}.
$\mathrm{s}_{1}=-1 \mathrm{M}+0.6 \mathrm{M}=-0.4 \mathrm{M}$
$\mathrm{s}_{2}=-1 \mathrm{M}-0.6 \mathrm{M}=-1.6 \mathrm{M}$
Plugging into the general form of underdamped solution completes our answer:
$\mathrm{v}(\mathrm{t})=13.3\left(\mathrm{e}^{-0.4 \mathrm{Mt}}-\mathrm{e}^{-1.6 \mathrm{Mt}}\right) \mathrm{V}$

