2. (50 points)

$$
\omega_{\mathrm{o}}=1 \mathrm{Mrad} / \mathrm{sec}
$$

a. Determine the coefficients of the Fourier series, a_{v}, a_{n}, and b_{n}, for the periodic waveform $\mathrm{v}_{\mathrm{i}}(\mathrm{t})$. Also, use these Fourier coefficients to find the coefficients of the first five terms of the Fourier series written in terms of inverse phasors:
$v_{1}(t)=a_{v}+\sum_{n=1}^{\infty} A_{n} \cos \left(n \omega_{\mathrm{o}} t+\theta_{n}\right)$
Note any symmetry properties of the waveform that you use to determine coefficients.
b. The circuit on the left is a filter with output $v_{0}(t)$. Design a circuit to be placed in the box such that the filter rejects the fundamental frequency of $v_{i}(t)$ and has a bandwidth of $10,000 \mathrm{rad} / \mathrm{sec}$. Specify the component values. Show how the components are connected in the circuit.
ans: a) $\quad a_{v}=0$

$$
\begin{aligned}
& a_{n}=\left\{\begin{array}{cc}
\frac{40}{\pi n} \sin \frac{\pi n}{4} & n \text { odd } \\
0 & n \text { even }
\end{array}\right. \\
& b_{n}=0 \text { for all } n \\
& A_{1}=\frac{20 \sqrt{2}}{\pi}, \theta_{1}=0^{\circ} \quad A_{2}=0, \theta_{2}=0^{\circ} \quad A_{3}=\frac{20 \sqrt{2}}{3 \pi}, \theta_{3}=0^{\circ} \\
& A_{4}=0, \quad \theta_{4}=0^{\circ} \quad A_{5}=\frac{-4 \sqrt{2}}{\pi}, \quad \theta_{5}=0^{\circ}
\end{aligned}
$$

Symmetries used: even function, half wave (shift-flip symmetry), and quarter wave symmetry.
b)

sol'n: (a) $a_{v}=$ ave value of $v_{i}(t)=0$ since equal positive and negative areas are under the $v_{i}(t)$ curve.
$\mathrm{v}_{\mathrm{i}}(\mathrm{t})$ is symmetric around vertical axis so $\mathrm{v}_{\mathrm{i}}(\mathrm{t})$ is an even function. This means we need only even functions-cosine terms-in our Fourier series.
$\therefore \mathrm{b}_{\mathrm{n}}=0$ for all n (no $\sin \left(n \omega_{\mathrm{o}} \mathrm{t}\right)$ terms in Fourier series)
If we shift $v_{i}(t)$ one-half period and flip it upside down, we have $v_{i}(t)$ again. Thus, we have half-wave symmetry or, as refer to it, shift-flip symmetry.
$\therefore \mathrm{a}_{\mathrm{n}}=0$ for n even ($\mathrm{b}_{\mathrm{n}}=0$ for n even, too, but we already know $\mathrm{b}_{\mathrm{n}}=0$ all n)
For the question of quarter wave symmetry, we look for symmetry around $\mathrm{T} / 4$ and $3 \mathrm{~T} / 4$. What we find is that $\mathrm{v}_{\mathrm{i}}(\mathrm{t})$ is odd around $\mathrm{T} / 4$ and $3 \mathrm{~T} / 4$. In other words, if the vertical axis for $\mathrm{T}=0$ were shifted to $\mathrm{T} / 4$ or $3 \mathrm{~T} / 4, \mathrm{v}_{\mathrm{i}}(\mathrm{t})$ would be an odd function. If we superimpose the $\cos \left(n \omega_{0} t\right)$ term for $n=1$ on $v_{i}(t)$ and consider the signs of the product $v_{i}(t) \cos \left(n \omega_{0} t\right)$, as shown below, we discover that we can calculate a_{1} by quadrupling the integral from 0 to $T / 4$ in the formula for a_{1} :

$$
a_{1}=4 \cdot \frac{2}{T} \int_{0}^{T / 4} v_{i}(t) \cos \left(1 \cdot \omega_{\mathrm{o}} t\right) d t
$$

$$
\omega_{\mathrm{o}}=1 \mathrm{Mrad} / \mathrm{sec}
$$

The same will hold true for every odd numbered n.
Now we define $v_{i}(t)$ from 0 to $T / 4$:

$$
v_{i}(t)=\left\{\begin{array}{cc}
10 & 0 \leq t \leq T / 8 \\
0 & T / 8<t \leq T / 4
\end{array}\right.
$$

Thus,

$$
a_{n}=\frac{8}{T}[\int_{0}^{T / 8} 10 \cos \left(n \omega_{o} t\right) d t+\underbrace{\int_{T / 8}^{T / 4} 0 \cdot \cos \left(n \omega_{o} t\right) d t}_{\int 0 d t=0}]
$$

or

$$
\begin{aligned}
a_{n} & =\frac{8}{T} \int_{0}^{T / 8} 10 \cos \left(n \omega_{o} t\right) d t \\
& =\left.\frac{8}{T} \frac{10 \sin \left(n \omega_{o} t\right)}{n \omega_{o}}\right|_{0} ^{T / 8}
\end{aligned}
$$

Now substitute:
$\omega_{\mathrm{o}} \equiv \frac{2 \pi}{T}$

$$
\begin{aligned}
a_{n} & =\left.\frac{\mathscr{X}}{X} \frac{10 \sin n \frac{2 \pi}{\mathrm{~T}}}{n \frac{2 \pi}{X}}\right|_{0} ^{\mathrm{T} / 8} \\
& \left.=\frac{40}{\pi n} \sin \frac{2 \pi n}{X} \frac{X}{8}-\sin ^{0} 0\right] \\
a_{n} & =\frac{40}{\pi n} \sin \left(\frac{\pi n}{4}\right) \text { for } n \text { odd }
\end{aligned}
$$

If we compute the values of $\sin (\pi n / 4)$ for $n=0,1, \ldots$ we get $0,1 / \sqrt{ } 2,1,1 / \sqrt{ } 2$, $0,-1 / \sqrt{ } 2,-1 / \sqrt{ } 2,0$, in a repeating pattern.

Therefore, a_{n} coefficients for n odd up to the fifth harmonic are:

$$
a_{1}=\frac{\sqrt{2}}{2} \cdot \frac{40}{\pi}, \quad a_{3}=\frac{\sqrt{2}}{2} \cdot \frac{40}{3 \pi}, \quad a_{5}=\frac{-\sqrt{2}}{2} \cdot \frac{40}{5 \pi}
$$

Now we convert to phasor form, $a_{n} \cos \left(n \omega_{0} t\right)+b_{n} \sin \left(n \omega_{0} t\right)$. The timedomain rectangular representation of the nth term of the Fourier series is $a_{n} \cos \left(n \omega_{o} t\right)+b_{n} \sin \left(n \omega_{o} t\right)$

Recalling that the phasor for pure $\cos ()$ is 1 and for pure $\sin ()$ is -j , the phasor for the nth term of the Fourier series is
$\mathrm{a}_{\mathrm{n}}\left(\right.$ or $\left.\mathrm{a}_{\mathrm{n}} \angle 0^{\circ}\right)+-\mathrm{j} \mathrm{b}_{\mathrm{n}}\left(\right.$ or $\left._{\mathrm{b}} \angle-90^{\circ}\right)$
Thus, our phasor is $a_{n}-j b_{n}$. Incidentally, if we convert to polar form, $\mathrm{A}_{\mathrm{n}} \angle \theta_{\mathrm{n}}$, we have:

$$
\begin{aligned}
A_{n} & =\sqrt{a_{n}^{2}+b_{n}^{2}} \\
\theta_{n} & =\tan ^{-1}\left(\frac{-b_{n}}{a_{n}}\right)
\end{aligned}
$$

Here, however, all $b_{n}=0$. So we have $A_{n}=a_{n}, \theta_{n}=0^{\circ}$. In other words, we have only $\cos ()$ terms, and the phase angle for $\cos ()$ terms is zero since they are real.

$$
\begin{array}{ll}
A_{1}=a_{1}=\frac{20 \sqrt{2}}{\pi}, & \theta_{1}=0^{\circ} \\
A_{3}=a_{3}=\frac{20 \sqrt{2}}{3 \pi}, & \theta_{3}=0^{\circ}
\end{array}
$$

$$
A_{5}=a_{5}=\frac{-20 \sqrt{2}}{5 \pi}, \quad \theta_{5}=0^{\circ}
$$

Note: You may find it easier to derive symmetry results by drawing $\mathrm{v}_{\mathrm{i}}(\mathrm{t})$ and the $\cos ()$ or $\sin ()$ waveforms on a plot and multiplying them point by point (a rough sketch will do). The area under the curve corresponds to

$$
\int_{0}^{T} v_{i}(t) \cos () \text { or } \int_{0}^{T} v_{i}(t) \sin ()
$$

If the positive and negative areas under the product curves cancel, $a_{n}\left(\right.$ or $\left.b_{n}\right)=0$.
sol'n: (b) We want a band reject filter with center frequency $=\omega_{0}=1 \mathrm{Mrad} / \mathrm{s}$, (see diagram in problem statement), and bandwidth $\beta=10 \mathrm{krad} / \mathrm{s}$ (see problem statement).

Note: By coincidence, in this problem ω_{o} for the Fourier series (which is determined by the value of the period, T), happens to be the same as the center frequency, ω_{0}, of the filter (which is determined the values of R, L, and C). This need not always be the case.

Our transfer function is $\mathrm{H}(\mathrm{s}) \equiv \mathrm{V}_{\mathrm{o}}(\mathrm{s}) / \mathrm{V}_{\mathrm{i}}(\mathrm{s})$.
We use V -divider formula for $\mathrm{V}_{\mathrm{o}}(\mathrm{s})$ in terms of $\mathrm{V}_{\mathrm{i}}(\mathrm{s})$, letting z_{L} denote the impedance in the box.

$$
\begin{aligned}
& V_{\mathrm{o}}(s)=V_{i}(s) \cdot \frac{z_{L}}{1 k \Omega+z_{L}} \\
& H(s)=\frac{V_{\mathrm{o}}(s)}{V_{i}(s)}=\frac{z_{L}}{1 k \Omega+z_{L}}
\end{aligned}
$$

We need $\mathrm{z}_{\mathrm{L}}=0$ at $\omega=1 \mathrm{M}$ to get

$$
\frac{V_{\mathrm{o}}(s=j \omega=j 1 \mathrm{Mr} / \mathrm{s})}{V_{i}(s=j \omega=j 1 \mathrm{Mr} / \mathrm{s})}=0
$$

We use an L in series with a C to get z cancellation:

$$
z_{L}=j \omega L-\frac{j}{\omega C}
$$

To get cancellation, $\omega \mathrm{L}=1 / \omega \mathrm{C}$ at $\omega=1 \mathrm{M}$ or
$L C=\frac{1}{\omega^{2}}=\frac{1}{(1 \mathrm{M})^{2}}=1 \mathrm{ps}$
We have RLC in series, and for a series RLC band-reject filter, we have $\beta=\mathrm{R} / \mathrm{L}$. For $\beta=10 \mathrm{krad} / \mathrm{s}$ and $\mathrm{R}=1 \mathrm{k} \Omega$, we get
$\mathrm{L}=\mathrm{R} / \beta=0.1 \mathrm{H}$.
Knowing L, we can now solve for C :

$$
\begin{aligned}
& C=\frac{1}{L \omega^{2}}=\frac{1}{0.1 \mathrm{H}(1 \mathrm{M} / \mathrm{s})^{2}} \\
& \therefore \quad C=10 \mathrm{pF}
\end{aligned}
$$

