2. (50 points)

\[v_1(t) = a_v + \sum_{n=1}^{\infty} A_n \cos \left(n\omega_o t + \theta_n \right) \]

Note any symmetry properties of the waveform that you use to determine coefficients.

b. The circuit on the left is a filter with output \(v_o(t) \). Design a circuit to be placed in the box such that the filter rejects the fundamental frequency of \(v_i(t) \) and has a bandwidth of 10,000 rad/sec. Specify the component values. Show how the components are connected in the circuit.
ans: a) \[a_v = 0 \]
\[a_n = \begin{cases}
40 \sin \frac{\pi n}{4} & \text{n odd} \\
0 & \text{n even}
\end{cases} \]
\[b_n = 0 \text{ for all } n \]
\[A_1 = \frac{20\sqrt{2}}{\pi}, \quad \theta_1 = 0^\circ \
A_2 = 0, \quad \theta_2 = 0^\circ
A_3 = \frac{20\sqrt{2}}{3\pi}, \quad \theta_3 = 0^\circ
\]
\[A_4 = 0, \quad \theta_4 = 0^\circ
A_5 = \frac{-4\sqrt{2}}{\pi}, \quad \theta_5 = 0^\circ \]

Symmetries used: even function, half wave (shift-flip symmetry), and quarter wave symmetry.

b)

sol'n: (a) \[a_v = \text{ave value of } v_i(t) = 0 \text{ since equal positive and negative areas are under the } v_i(t) \text{ curve.} \]
\[v_i(t) \text{ is symmetric around vertical axis so } v_i(t) \text{ is an even function. This} \]
\[\text{means we need only even functions—cosine terms—in our Fourier series.} \]
\[\therefore b_n = 0 \text{ for all } n \text{ (no } \sin (n\omega_0 t) \text{ terms in Fourier series)} \]

If we shift \(v_i(t) \) one-half period and flip it upside down, we have \(v_i(t) \) again. Thus, we have half-wave symmetry or, as refer to it, shift-flip symmetry.
\[\therefore a_n = 0 \text{ for } n \text{ even (} b_n = 0 \text{ for } n \text{ even, too, but we already know } b_n = 0 \text{ all } n) \]

For the question of quarter wave symmetry, we look for symmetry around \(T/4 \) and \(3T/4 \). What we find is that \(v_i(t) \) is odd around \(T/4 \) and \(3T/4 \). In other words, if the vertical axis for \(T = 0 \) were shifted to \(T/4 \) or \(3T/4 \), \(v_i(t) \) would be an odd function. If we superimpose the \(\cos(n\omega_0 t) \) term for \(n = 1 \) on \(v_i(t) \) and consider the signs of the product \(v_i(t)\cos(n\omega_0 t) \), as shown below, we discover that we can calculate \(a_1 \) by quadrupling the integral from 0 to \(T/4 \) in the formula for \(a_1 \):
\[a_1 = 4 \cdot \frac{2}{T} \int_0^{T/4} v_i(t) \cos(1 \cdot \omega_0 t) \, dt \]

The same will hold true for every odd numbered \(n \).

Now we define \(v_i(t) \) from 0 to \(T/4 \):

\[
v_i(t) = \begin{cases}
10 & 0 \leq t \leq T/8 \\
0 & T/8 < t \leq T/4
\end{cases}
\]

Thus,

\[
a_n = \frac{8}{T} \left[\int_0^{T/8} 10 \cos(n \omega_0 t) \, dt + \int_0^{T/8} 0 \cdot \cos(n \omega_0 t) \, dt \right]
\]

or

\[
a_n = \frac{8}{T} \int_0^{T/8} 10 \cos(n \omega_0 t) \, dt
\]

\[
= \frac{8}{T} \left. 10 \sin(n \omega_0 t) \right|_0^{T/8}
\]

Now substitute:

\[
\omega_0 = \frac{2\pi}{T}
\]
\[a_n = \frac{8}{\pi} \cdot 10 \sin \frac{n \pi}{T} \left(\frac{T/8}{2 \pi} \right) \]

\[= \frac{40}{\pi n} \sin \frac{2\pi n \pi}{T} - \sin \frac{0}{0} \]

\[a_n = \frac{40}{\pi n} \sin \left(\frac{\pi n}{4} \right) \quad \text{for } n \text{ odd} \]

If we compute the values of \(\sin(\pi n/4) \) for \(n = 0, 1, \ldots \) we get 0, \(1/\sqrt{2} \), 1, \(1/\sqrt{2} \), 0, \(-1/\sqrt{2} \), \(-1/\sqrt{2} \), 0, in a repeating pattern.

Therefore, \(a_n \) coefficients for \(n \) odd up to the fifth harmonic are:

\[a_1 = \sqrt{2} \cdot \frac{40}{2 \pi}, \quad a_3 = \sqrt{2} \cdot \frac{40}{3\pi}, \quad a_5 = -\sqrt{2} \cdot \frac{40}{5\pi} \]

Now we convert to phasor form, \(a_n \cos (\omega_0 t) + b_n \sin (\omega_0 t) \). The time-domain rectangular representation of the \(n \)th term of the Fourier series is

\[a_n \cos (\omega_0 t) + b_n \sin (\omega_0 t) \]

Recalling that the phasor for pure \(\cos() \) is 1 and for pure \(\sin() \) is \(-j\), the phasor for the \(n \)th term of the Fourier series is

\[a_n \text{ (or } a_n \angle 0^\circ) + -j b_n \text{ (or } b_n \angle -90^\circ) \]

Thus, our phasor is \(a_n - j b_n \). Incidentally, if we convert to polar form, \(A_n \angle \theta_n \), we have:

\[A_n = \sqrt{a_n^2 + b_n^2} \]

\[\theta_n = \tan^{-1} \left(\frac{-b_n}{a_n} \right) \]

Here, however, all \(b_n = 0 \). So we have \(A_n = a_n, \theta_n = 0^\circ \). In other words, we have only \(\cos() \) terms, and the phase angle for \(\cos() \) terms is zero since they are real.

\[A_1 = a_1 = \frac{20\sqrt{2}}{\pi}, \quad \theta_1 = 0^\circ \]

\[A_3 = a_3 = \frac{20\sqrt{2}}{3\pi}, \quad \theta_3 = 0^\circ \]
\[A_5 = a_5 = \frac{-20\sqrt{2}}{5\pi}, \quad \theta_5 = 0^\circ \]

Note: You may find it easier to derive symmetry results by drawing \(v_i(t) \) and the \(\cos(\cdot) \) or \(\sin(\cdot) \) waveforms on a plot and multiplying them point by point (a rough sketch will do). The area under the curve corresponds to

\[
\int_0^T v_i(t) \cos(\cdot) \quad \text{or} \quad \int_0^T v_i(t) \sin(\cdot)
\]

If the positive and negative areas under the product curves cancel, \(a_n \) (or \(b_n \)) = 0.

sol'n: (b) We want a band reject filter with center frequency = \(\omega_o = 1M \text{ rad/s} \), (see diagram in problem statement), and bandwidth \(\beta = 10k \text{ rad/s} \) (see problem statement).

Note: By coincidence, in this problem \(\omega_o \) for the Fourier series (which is determined by the value of the period, \(T \)), happens to be the same as the center frequency, \(\omega_o \), of the filter (which is determined the values of \(R \), \(L \), and \(C \)). This need not always be the case.

Our transfer function is \(H(s) \equiv \frac{V_o(s)}{V_i(s)} \).

We use V-divider formula for \(V_o(s) \) in terms of \(V_i(s) \), letting \(z_L \) denote the impedance in the box.

\[
V_o(s) = V_i(s) \cdot \frac{z_L}{1 k\Omega + z_L}
\]

\[
H(s) = \frac{V_o(s)}{V_i(s)} = \frac{z_L}{1 k\Omega + z_L}
\]

We need \(z_L = 0 \) at \(\omega = 1M \) to get

\[
\frac{V_o(s = j\omega = j1Mr/s)}{V_i(s = j\omega = j1Mr/s)} = 0
\]

We use an L in series with a C to get \(z \) cancellation:
To get cancellation, $\omega L = 1/\omega C$ at $\omega = 1$M or

$$LC = \frac{1}{\omega^2} = \frac{1}{(1\text{M})^2} = 1 \text{ ps}$$

We have RLC in series, and for a series RLC band-reject filter, we have $\beta = R/L$. For $\beta = 10$ krad/s and $R = 1$ kΩ, we get

$L = \frac{R}{\beta} = 0.1$ H.

Knowing L, we can now solve for C:

$$C = \frac{1}{L\omega^2} = \frac{1}{0.1\text{H}(1\text{M/s})^2}$$

$\therefore \quad C = 10 \text{ pF}$