4. (50 points)

a. Find the input impedance, $\mathrm{z}_{\mathrm{in}}=\mathbf{V}_{1} / \mathbf{I}_{1}$, for the above circuit.
b. Using $z_{i n}$ from (a), find a numerical expression for $\mathbf{V}_{A B}$ in the circuit below.

Balanced three-phase system.

$$
\mathbf{V}_{\mathrm{an}}=52 \angle 0^{\circ} \mathrm{V} \quad \mathbf{V}_{\mathrm{bn}}=52 \angle-120^{\circ} \mathrm{A} \quad \mathrm{z}_{\text {line }}=\mathrm{j} 12 \Omega
$$

ans: a) $\mathrm{z}_{\mathrm{in}}=5 \Omega$
b) $\quad \mathbf{V}_{\mathrm{AB}} \approx 234 \angle-37.38^{\circ} \mathrm{V}$
sol'n: (a) Transformer is ideal. To distinguish currents in the transformer itself from other currents, we use a prime to denote the transformer currents. The current flowing into the dot on the primary side is \mathbf{I}_{1}^{\prime}, and the current flowing out of the dot on the secondary side is \mathbf{I}_{2}^{\prime} :

Using the above model, we can derive the formula (or we can just look up the formula) for secondary impedance reflected into the primary:

$$
z_{r}=\left(\frac{N_{1}}{N_{2}}\right)^{2} z_{2}
$$

Our model, given $N_{1} / N_{2}=1 / 2$ turns ratio, is:

$$
z=\frac{(5-j 5)(5+j 5)}{5-j 5+5+j 5}=\frac{5^{2}+5^{2}}{10}=5 \Omega
$$

sol'n: (b) Our first step is to convert our circuit to a $\mathrm{Y}-\mathrm{Y}$ form so we can use a singlephase equivalent model. In this problem, the circuit is already in $\mathrm{Y}-\mathrm{Y}$ form and we may draw the single-phase equivalent directly:

We find $\mathbf{V}_{\text {AN }}$ and then calculate $\mathbf{V}_{\text {AB }}$ using phasor diagrams. We obtain $\mathbf{V}_{\text {AN }}$ from the voltage divider formula:

$$
\begin{aligned}
& \mathbf{V}_{A N}=\mathbf{V}_{a^{\prime} n} \frac{z_{\text {in }}-j 12 \Omega}{z_{\text {line }}+z_{\text {in }}-j 12 \Omega} \\
& \mathbf{V}_{A N}=52 \angle 0^{\circ} V \frac{5 \Omega-j 12 \Omega}{j 12 \Omega+5 \Omega-j 12 \Omega}=52 \angle 0^{\circ} V \frac{5 \Omega-j 12 \Omega}{5 \Omega} \\
& \mathbf{V}_{A N}=52 \angle 0^{\circ} V \frac{13 \angle-67.38^{\circ} \Omega}{5 \Omega}
\end{aligned}
$$

We use a phasor diagram to relate $\mathbf{V}_{\text {AN }}$ to $\mathbf{V}_{\text {AB }}$. The diagram shows the relationship between $\mathbf{V}_{\text {AN }}$ and \mathbf{V}_{AB}, and we assume $\mathbf{V}_{\text {AN }}$ has phase angle zero so we can find the relative phase angle of \mathbf{V}_{AB}.

From the diagram, we deduce that

$$
\mathbf{V}_{A B}=\mathbf{V}_{A N} \cdot \sqrt{3} \angle 30^{\circ}
$$

Plugging in the value of $\mathbf{V}_{\text {AN }}$ gives the numerical value of \mathbf{V}_{AB}.

$$
\begin{aligned}
& \mathbf{V}_{A B}=52 \angle 0^{\circ} V \frac{13 \angle-67.38^{\circ} \Omega}{5 \Omega} \sqrt{3} \angle 30^{\circ}=\frac{52 \cdot 13 \cdot \sqrt{3}}{5} \angle-37.38^{\circ} V \\
& \mathbf{V}_{\mathrm{AB}} \approx 234 \angle-37.38^{\circ} \mathrm{V}
\end{aligned}
$$

