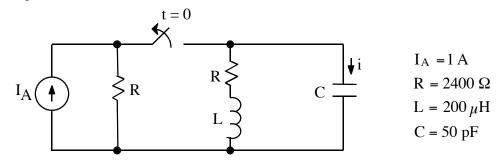

(25 points) 1.

 $\begin{aligned} &v_g \text{ is a dc voltage source} \\ &\text{After having been open for a long time, the switch is closed at } t=0. \end{aligned}$

- Give expressions for $i_1(0+)$ and $i_1'(0+)$, (i.e., di_1/dt at t=0+), in terms of no more than a. v_g , R_o , R, L, and C.
- For $L = 10 \mu H$, choose R and C so that the system is underdamped and b. $\alpha = 3 \cdot 10^6 \ rad/s, \, \omega_d = 4 \cdot 10^6 \ rad/s.$

(25 points) 2.


At t = 0, $v_g(t)$ switches instantaneously from $-v_o$ to $+v_o$.

Write the state-variable equations in terms of the state vector a.

$$x = \begin{bmatrix} i_1 \\ i_2 \\ v \end{bmatrix}$$

b. Evaluate the state vector x at t = 0+.

3. (50 points)

- a. After being closed for a long time, the switch is opened at t=0. Write a numerical time-domain expression for i(t), the current through the capacitance. This expression must not contain any complex numbers.
- b. State whether i(t) is underdamped, overdamped, or critically damped.