1. (25 points)

\[v_g \text{ is a dc voltage source} \]

After having been open for a long time, the switch is closed at \(t = 0 \).

a. Give expressions for \(i_1(0+) \) and \(i_1'(0+) \), (i.e., \(di_1/dt \) at \(t = 0^+ \)), in terms of no more than \(v_g, R_o, R, L, \) and \(C \).

b. For \(L = 10 \, \mu\text{H} \), choose \(R \) and \(C \) so that the system is underdamped and \(\alpha = 3 \times 10^6 \text{ rad/s}, \omega_d = 4 \times 10^6 \text{ rad/s} \).

2. (25 points)

\[v_g(t) \text{ switches instantaneously from } -v_0 \text{ to } +v_0. \]

a. Write the state-variable equations in terms of the state vector

\[x = \begin{bmatrix} i_1 \\ i_2 \\ v \end{bmatrix} \]

b. Evaluate the state vector \(x \) at \(t = 0^+ \).
3. (50 points)

I_A = 1 A
R = 2400 Ω
L = 200 μH
C = 50 pF

a. After being closed for a long time, the switch is opened at \(t = 0 \). Write a numerical time-domain expression for \(i(t) \), the current through the capacitance. This expression must not contain any complex numbers.

b. State whether \(i(t) \) is underdamped, overdamped, or critically damped.