2. (25 points)

At $t=0, v_{g}(t)$ switches instantaneously from $-v_{0}$ to $+v_{o}$.
a. Write the state-variable equations in terms of the state vector

$$
x=\left[\begin{array}{l}
i_{1} \\
i_{2} \\
v
\end{array}\right]
$$

b. Evaluate the state vector x at $\mathrm{t}=0^{+}$.
ans: a) $\frac{d i_{1}}{d t}=-\frac{\left(R_{1}+R_{2}\right)}{L_{1}} i_{1}+\frac{R_{2}}{L_{1}} i_{2}-\frac{1}{L_{1}} v+\frac{1}{L_{1}} v_{\mathrm{o}}$
$\frac{d i_{2}}{d t}=\frac{R_{2}}{L_{2}} i_{1}-\frac{R_{2}}{L_{2}} i_{2}+\frac{1}{L_{2}} v$
$\frac{d v}{d t}=\frac{1}{C} i_{1}-\frac{1}{C} i_{2}$
b) $\left[\begin{array}{c}i_{1} \\ i_{2} \\ v\end{array}\right]_{t=0^{+}}=\left[\begin{array}{c}-v_{o} / R_{1} \\ -v_{o} / R_{1} \\ 0 V\end{array}\right]$
sol'n: (a) Our Equations must have the derivative of a state variable on the left and only state variables and constants on the right.

Find an equation for $\mathrm{di}_{1} / \mathrm{dt}$ from $\mathrm{v}_{\mathrm{L} 1}=\mathrm{L}_{1} \mathrm{di}_{1} / \mathrm{dt}$ or $\mathrm{di}_{1} / \mathrm{dt}=\mathrm{v}_{\mathrm{L} 1} / \mathrm{L}_{1}$. Similarly, $\mathrm{di}_{2} / \mathrm{dt}=\mathrm{v}_{\mathrm{L} 2} / \mathrm{L}_{2}$.

We find an equation for $\mathrm{dv} / \mathrm{dt}$ from $\mathrm{i}_{\mathrm{C}}=\mathrm{C} \mathrm{dv} / \mathrm{dt}$.
The diagram below shows the polarities of $\mathrm{v}_{\mathrm{L} 1}, \mathrm{v}_{\mathrm{L} 2}$, and i_{C}. It also shows a reference and node voltage.

We treat L_{1} and L_{2} as current sources and v as a voltage source, and we solve for $\mathrm{v}_{\mathrm{L} 1}, \mathrm{v}_{\mathrm{L} 2}$, and i_{C} using standard techniques (such as node-voltage or superposition). Each variable we are solving for is the voltage for a current source or the current for a voltage source. Thus, they are variables we solve for indirectly: we solve the circuit and then use Kirchhoff's laws to find the value we are looking for in terms of other values.

Since the current through R_{2} is $i_{1}-i_{2}$, we may solve for node voltage, $v_{L 2}$, directly in the above circuit: (We could also use the node-voltage method.)
$v_{L 2}=v+\left(i_{1}-i_{2}\right) R_{2}$
This happens to be one of the variables we wish to solve for, and we find the equation for $\mathrm{di}_{2} / \mathrm{dt}$ by dividing the equation by L_{2}.

$$
\frac{d i_{2}}{d t}=\frac{v_{L 2}}{L_{2}}=\frac{1}{L_{2}}\left[v+\left(i_{1}-i_{2}\right) R_{2}\right]
$$

or

$$
\frac{d i_{2}}{d t}=\frac{v_{L 2}}{L_{2}}=\frac{R_{2}}{L_{2}} i_{1}-\frac{R_{2}}{L_{2}} i_{2}+\frac{1}{L_{2}} v
$$

We derive $\mathrm{v}_{\mathrm{L} 1}$ from a voltage loop on the left.

$$
v_{L 1}=v_{g}-i_{1} R_{1}-\left(i_{1}-i_{2}\right) R_{2}-v
$$

We find the equation for $\mathrm{di}_{1} / \mathrm{dt}$ by dividing the equation by L_{1} and substituting v_{O} for v_{g}.

$$
\frac{d i_{1}}{d t}=\frac{v_{L 1}}{L_{1}}=\frac{1}{L_{1}}\left[v_{g}-i_{1} R_{1}-\left(i_{1}-i_{2}\right) R_{2}-v\right]
$$

$$
\frac{d i_{1}}{d t}=\frac{v_{L 1}}{L_{1}}=-\frac{R_{1}+R_{2}}{L_{1}} i_{1}+\frac{R_{2}}{L_{1}} i_{2}-\frac{1}{L_{1}} v+\frac{1}{L_{1}} v_{\mathrm{o}}
$$

We derive ic from a current summation at the top node.

$$
i_{C}=i_{1}-i_{2}
$$

We find the equation for $\mathrm{dv} / \mathrm{dt}$ by dividing the equation by C .

$$
\frac{d v}{d t}=\frac{i_{C}}{C}=\frac{1}{C}\left(i_{1}-i_{2}\right)
$$

or
$\frac{d v}{d t}=\frac{i_{C}}{C}=\frac{1}{C} i_{1}-\frac{1}{C} i_{2}$
sol'n: (b) We find initial conditions by looking at the circuit at time $\mathrm{t}=0^{-}$. Because we are dealing with state variables, (i.e., energy variables), their values cannot change instantly and will be the same at time $t=0^{-}$and $\mathrm{t}=0^{+}$.

At time $\mathrm{t}=0^{-}$, the circuit has reached equilibrium; voltages and currents are no longer changing; derivatives are zero; $\mathrm{v}_{\mathrm{L}}=\mathrm{Ldi} / \mathrm{dt}=0$ and $\mathrm{i}_{\mathrm{C}}=\mathrm{dv}_{\mathrm{C}} / \mathrm{dt}=0$. Thus, the inductors look like wires and the capacitor looks like an open circuit.

Since no current flows through R_{2}, we may find i_{1} (which equals i_{2}) from the loop on the left side.
$i_{1}\left(0^{-}\right)=i_{2}\left(0^{-}\right)=\frac{v_{g}}{R_{1}}=\frac{-v_{0}}{R_{1}}$
Since no current flows through R_{2}, there is no voltage drop across R_{2}. Thus, v equals the voltage drop across the wire representing L_{2}. In other words, we have

$$
v\left(0^{-}\right)=0
$$

The state variables have the same value at time $\mathrm{t}=0^{+}$as at $\mathrm{t}=0^{-}$.

