3. (50 points)

![Circuit Diagram]

\[I_A = 1 \text{ A} \]
\[R = 2400 \Omega \]
\[L = 200 \mu \text{H} \]
\[C = 50 \text{ pF} \]

a. After being closed for a long time, the switch is opened at \(t = 0 \). Write a numerical time-domain expression for \(i(t) \), the current through the capacitance. This expression must not contain any complex numbers.

b. State whether \(i(t) \) is underdamped, overdamped, or critically damped.

ans: a) \(i(t > 0) = \left(-\frac{1}{2} \cos 8Mt - \frac{3}{8} \sin 8Mt \right) e^{-6Mt} \text{ A} \)

b) Underdamped.

sol'n: (a) When the switch is open, we have series RLC.

\[\alpha = \frac{R}{2L} = \frac{2.4k}{2.200\mu} = \frac{1.4k}{400} \quad \text{M} = \frac{6}{s} \]
\[\omega_o^2 = \frac{1}{LC} = \frac{1}{200\mu \cdot 50p} = \frac{1}{10k \cdot 10k} = \frac{100 \text{ M}^2}{s^2} \]

\[\therefore \quad \omega_o = 10 \text{ M} / s \]
\[\omega_d = \sqrt{\omega_o^2 - \alpha^2} = \sqrt{(10 \text{ M})^2 - (6 \text{ M})^2} = 8 \text{ M} / s \quad \left(6^2 + 8^2 = 10^2 \right) \]

Now find initial condition (i.e. \(i \) and \(di/dt \), or \(v \) and \(dv/dt \) at \(t = 0^+ \)).

\[i_L(t = 0^+) = i_L(t = 0^-) \]
\[v_C(t = 0^+) = v_C(t = 0^-) \]

\[\left\{ \begin{array}{l}
\text{cannot change instantly}
\end{array} \right. \]
Circuit for t = 0: L's = wires, C's = open circuits.

\[i_L(t=0^-) = \frac{1}{2} \text{A} \quad \text{(current divider)} \]

\[v_C(t = 0^-) = I_A R \parallel R = I_A \cdot \frac{R}{2} = 1 \text{A} \cdot 1.2 \text{kΩ} = 1.2 \text{kV} \]

\[\therefore \quad i_L(t = 0^+) = \frac{1}{2} \text{A}, \quad v_C(t = 0^+) = 1.2 \text{kV} \]

After the switch is open, \(i = -i_L \) since C and L are in series.

\[\therefore \text{ Solve for } i_L, \text{ and then change the sign. Note that } i_L \text{ is the variable in the differential equation for a series RLC. Thus, we know how to find it.} \]

We also need

\[\left. \frac{di_L(t)}{dt} \right|_{t=0^+}. \]

Use V-loop for RLC at \(t = 0^+ \):

\[L \frac{di_L}{dt} + i_L R - v_C = 0 \text{ V.} \]

Note that at \(t = 0^+ \), \(i_R = i_L \) since R, L in series,

\[\left. \frac{di_L}{dt} \right|_{t=0^+} = \frac{-i_L(t = 0^+)R + v_C(t = 0^+)}{L} \]

\[\left. \frac{di_L}{dt} \right|_{t=0^+} = \frac{-\frac{1}{2} \text{A} \cdot 2.4 \text{kΩ} + 1.2 \text{kΩ}}{200 \mu\text{H}} \]

\[\left. \frac{di_L}{dt} \right|_{t=0^+} = 0 \text{ A/s} \]

Now use general underdamped solution:

\[i_L(t) = (B_1 \cos \omega_d t + B_2 \sin \omega_d t)e^{-\alpha t} \]
\[B_1 = i_L(t = 0^+), \quad -\alpha B_1 + \omega_d B_2 = \frac{di_L}{dt} \bigg|_{t=0^+} = 0 \text{ A/s} \]

\[\therefore B_1 = \frac{1}{2} \text{ A}, \quad B_2 = \frac{\alpha B_1}{\omega_d} = \frac{6M}{8M} \frac{1}{2} \text{ A} = \frac{3}{8} \text{ A} \]

\[\therefore -i(t > 0) = \left(\frac{1}{2} \cos 8Mt + \frac{3}{8} \sin 8Mt \right) e^{-6Mt} \text{ A} \]

sol'n: (b) \(\omega_0 > \alpha \Rightarrow \) underdamped