1. (30 points)

Using not more than one each R, L, and C , design a circuit to go in the dashed-line box that will produce the $\mathrm{IH\mid}$ vs. ω shown above, that is:

$$
\begin{aligned}
& \mid \mathrm{HI}=0.5 \text { at } \omega=10^{5} \mathrm{rps} \\
& \mathrm{|H|}=1 \text { at } \omega=0 \\
& \mid \mathrm{HI} \rightarrow 1 \text { as } \omega \rightarrow \infty
\end{aligned}
$$

Specify values of R, L, and C, and show how they would be connected in the circuit. Note that a bandwidth is not specified, and you do not have to satisfy any more than the three requirements specified above.

Ans:

* Any LC = 100 ps is acceptable (if part values are practical).

Sol'n: Given the frequency response plot, we want something resembling a bandreject filter. Since \mathbf{V}_{o} is measured across R_{1}, rather than across the dashed box, we want an L and C configuration that has maximum impedance at resonant frequency. Thus, we need an L in parallel with a C inside the dashed box.

If we denote dashed box by z, we have

$$
\mathbf{V}_{o}=\mathbf{V}_{i} \cdot \frac{R_{1}}{R_{1}+z}(\text { V-divider }) . \quad \therefore \quad H(j \omega) \equiv \frac{\mathbf{V}_{o}}{\mathbf{V}_{i}}=\frac{R_{1}}{R_{1}+z}
$$

Note that if
$z=j \omega L \| \frac{1}{j \omega C}=\frac{\frac{j \omega L}{j \omega C}}{j \omega L+\frac{1}{j \omega C}}=\frac{L / C}{j \omega L+\frac{1}{j \omega C}}$
then, at ω_{0}, we have $\mathrm{j} \omega \mathrm{L}=-\frac{1}{j \omega C}$.
So $z=\left.\frac{L / C}{0}\right|_{\omega=\omega_{o}}=\infty$ at $\omega=\omega_{o} \equiv \frac{1}{\sqrt{L C}}$.
Thus, $\mid H(j \omega) \|_{\omega=\omega_{o}}=\frac{R_{1}}{R_{1}+\infty}=0$.
We want a value of $1 / 2$, which we'll correct later on. We do have the desired response at high and low frequencies:

$$
\begin{aligned}
& \text { At } \omega=0, \quad z=\frac{L / C}{j \cdot 0 \cdot L+\frac{1}{j \cdot 0 \cdot C}}=\frac{L / C}{0+\infty}=0 \\
& \therefore\left|H(j \omega) \|_{\omega=0}=\left|\frac{R_{1}}{R_{1}+z}\right|=\left|\frac{R_{1}}{R_{1}}\right|=1\right. \\
& \text { At } \omega \rightarrow \infty \text {, } \\
& z=\frac{L / C}{j \cdot \infty \cdot L+\frac{1}{j \cdot \infty \cdot C}}=\frac{L / C}{j \cdot \infty \cdot L+0}=0 \\
& \therefore\left|H(j \omega) \|_{\omega \rightarrow \infty}=\left|\frac{R_{1}}{R_{1}+z}\right|=\left|\frac{R_{1}}{R_{1}}\right|=1\right.
\end{aligned}
$$

The remaining problem is to add an R_{2} in the dashed box so that $|H(j \omega)|_{\omega=\omega_{o}}=\frac{1}{2}$ instead of zero. For the parallel L and C , we have $|H(j \omega)|=\left|\frac{R_{1}}{R_{1}+R_{2}}\right|$ at $\omega=\omega_{0}$.
If we put R_{2} in series with the L parallel C, then we would still have $z=\mathrm{R}_{2}+\infty=\infty$, at $\omega=\omega_{\mathrm{o}}$. Thus, we must try something else.
If we put R_{2} in parallel with L parallel C , then we have $z=\mathrm{R}_{2} \| \infty=\mathrm{R}_{2}$ at $\omega=\omega_{0}$. This gives
$|H(j \omega)|=\left|\frac{R_{1}}{R_{1}+R_{2}}\right|$ at $\omega=\omega_{0}$.
We use $\mathrm{R}_{2}=\mathrm{R}_{1}=1 \Omega$ to get the required $|\mathrm{H}(\mathrm{j} \omega)|=1 / 2$ at $\omega=\omega_{0}$.
Now we must verify that we have the correct gain at $\omega=0$ and $\omega \rightarrow \infty$. For both cases we have
$\mathrm{j} \omega \mathrm{L} I 11 / \mathrm{j} \omega \mathrm{C}=0$. The extra R_{2} in parallel still gives $z=0$, as desired.
$\therefore \mathrm{R}_{2}=1 \Omega$.
Finally, we need $\omega_{o}=10^{5} \mathrm{rad} / \mathrm{s}$ (dip in plot). Since we have L parallel C even with the addition of R_{2}, we have the standard resonant frequency:
$\omega_{\mathrm{o}}=\frac{1}{\sqrt{L C}}$.
Therefore, we have
$L C=\frac{1}{\omega_{\mathrm{o}}^{2}}=\frac{1}{\left(10^{5}\right)^{2}}=\frac{100}{10^{12}}=100 \mathrm{ps}^{2}$.
Any LC $=100 \mathrm{ps}^{2}$ is acceptable unless the L or C are too large or small to be reasonable. For example, one practical solution is
$\mathrm{C}=1 \mu \mathrm{~F}$ and $\mathrm{L}=100 \mu \mathrm{H}$.

