2. (40 points)

Find the coefficients for the Fourier series of the above function. The period of the function is 8 sec . From integral tables or a calculator we have:

$$
\begin{aligned}
& \int e^{a x} \cos (b x) d x=\frac{e^{a x}[a \cos (b x)+b \sin (b x)]}{a^{2}+b^{2}} \\
& \int e^{a x} \sin (b x) d x=\frac{e^{a x}[a \sin (b x)-b \cos (b x)]}{a^{2}+b^{2}}
\end{aligned}
$$

Ans:

$$
\begin{aligned}
& a_{k}=\left\{\begin{array}{cc}
\frac{2\left(1+e^{-4}\right)}{1+\left(\frac{k \pi}{4}\right)^{2}} & k \text { odd } \\
0 & k \text { even }
\end{array}\right. \\
& b_{k}=\left\{\begin{array}{cc}
\frac{\frac{k \pi}{2}\left(1+e^{-4}\right)}{1+\left(\frac{k \pi}{4}\right)^{2}} & k \text { odd } \\
0 & k \text { even }
\end{array}\right.
\end{aligned}
$$

Sol'n: \quad Since $f(t)$ has equal area above and below the horizontal axis, we conclude that the DC offset is zero: $\mathrm{a}_{v}=0$.

Since $f(t)$ is neither even nor odd, we will have nonzero a_{k} and b_{k} terms. $f(t)$ does have shift-flip symmetry, however, so even-numbered terms for a_{k} and b_{k} will be zero. Furthermore, we need only compute integrals over the first half of the function and double them to find values of a_{k} and b_{k} for k odd.

We have the following formulas based on shift-flip symmetry:

$$
\begin{aligned}
& a_{k}=2 \frac{2}{T} \int_{0}^{T / 2} 4 e^{-t} \cos (k 2 \pi t / T) d t \\
& b_{k}=2 \frac{2}{T} \int_{0}^{T / 2} 4 e^{-t} \sin (k 2 \pi t / T) d t
\end{aligned}
$$

Using the integrals given in the problem and $\mathrm{T}=8$, we have (for k odd)

$$
\begin{aligned}
& a_{k}=2 \int_{0}^{4} e^{-t} \cos (k \pi t / 4) d x=\left.2 \cdot \frac{e^{-t}\left[-\cos (k \pi t / 4)+\frac{k \pi}{4} \sin (k \pi t / 4)\right]}{(-1)^{2}+\left(\frac{k \pi}{4}\right)^{2}}\right|_{0} ^{4} \\
& b_{k}=2 \int_{0}^{4} e^{-t} \sin (k \pi t / 4) d x=\left.2 \cdot \frac{e^{-t}\left[-\sin (k \pi t / 4)-\frac{k \pi}{4} \cos (k \pi t / 4)\right]}{(-1)^{2}+\left(\frac{k \pi}{4}\right)^{2}}\right|_{0} ^{4}
\end{aligned}
$$

Using $\sin (0)=0, \sin (k \pi)=0$, and $\cos (0)=1$, and substituting $t=4$ for the upper limit, gives

$$
\begin{aligned}
& a_{k}=2 \cdot \frac{e^{-4}[-\cos (k \pi)]+1}{(-1)^{2}+\left(\frac{k \pi}{4}\right)^{2}} \\
& b_{k}=2 \cdot \frac{\left(-\frac{k \pi}{4}\right)\left[e^{-4} \cos (k \pi)-1\right]}{(-1)^{2}+\left(\frac{k \pi}{4}\right)^{2}}
\end{aligned}
$$

We simplify further by noting that $\cos (k \pi)=-1$ when k is odd. With this substitution, we get the final answer.

