3. (30 points)

Write the time-domain expression of $\mathrm{v}(\mathrm{t})$ for the first through third harmonics.
Ans: $\quad \mathrm{v}(\mathrm{t})=1.6 \cos \left(300 \mathrm{k} t-69.4^{\circ}\right) \mathrm{V}$
Sol'n: Summary of steps expanded upon below:

1. We turn each frequency of $\mathrm{vg}_{\mathrm{g}}(\mathrm{t})$ into a phasor.
2. We pass each frequency, $\mathrm{k} \omega_{0}$, through the circuit by multiplying by the transfer function $\mathrm{H}\left(\mathrm{jk} \omega_{\mathrm{o}}\right)$.
3. The result is the phasor for frequency $\mathrm{k} \omega_{\mathrm{o}}$ in the output signal.
4. We convert the output signal phasor back to the time domain, (through the 1st 3 harmonics).

Note: We only have 1st and 3rd harmonics to worry about since we only have odd harmonics in $\mathrm{vg}_{\mathrm{g}}(\mathrm{t})$ and we were only asked to find the output signal's 1st through 3rd harmonics.

1. We turn each frequency of $\mathrm{vg}_{\mathrm{g}}(\mathrm{t})$ into a phasor.

$$
\begin{aligned}
& k=1: \frac{16}{\pi} \sin \left(\omega_{o} t\right) \xrightarrow{\mathbf{P}[]}-j \frac{16}{\pi} \text { or } \frac{16}{\pi} \angle-90^{\circ} \\
& k=3: \frac{16}{\pi} \frac{1}{3} \sin \left(3 \omega_{o} t\right) \xrightarrow{\mathbf{P}[]}-j \frac{16}{3 \pi} \text { or } \frac{16}{3 \pi} \angle-90^{\circ}
\end{aligned}
$$

2. We pass each frequency, $\mathrm{k} \omega_{\mathrm{o}}$, through the circuit by multiplying by the transfer function $\mathrm{H}\left(\mathrm{jk} \omega_{\mathrm{o}}\right)$.

$$
H(j \omega) \equiv \frac{V}{V_{g}}=\frac{j \omega+\frac{1}{j \omega C}}{R+j \omega L+\frac{1}{j \omega C}}(\text { V-divider })
$$

$\mathrm{k}=1$:

$$
\begin{aligned}
& H\left(j \omega_{o}\right)=\frac{\left(j \omega_{o}\right)^{2} L C+1}{j \omega_{o} R C+\left(j \omega_{o}\right)^{2} L C+1} \\
& H\left(j \omega_{o}\right)=\frac{-(100 k)^{2} 0.1 m 1 \mu+1}{j 100 k 10 k 1 \mu-(100 k)^{2} 0.1 m 1 \mu+1} \\
& H\left(j \omega_{o}\right)=\frac{-100^{2} \cdot 0.1 m+1}{j 1 k-100^{2} 0.1 m+1}=\frac{0}{j 1 k}=0
\end{aligned}
$$

In this case, the L and C together behave like a wire at frequency ω_{o}. The voltage drop across the wire is zero, as is the circuit output. Consequently, $\mathrm{H}\left(\mathrm{j} \omega_{\mathrm{o}}\right)=0$.

Note: In this case, the ω_{0} for the $\mathrm{vg}_{\mathrm{g}}(\mathrm{t})$ Fourier series happens to be the same as the center (or resonant, or characteristic) frequency of the L and C :

$$
\omega_{\mathrm{o}}=\sqrt{\frac{1}{L C}}
$$

Typically, the ω_{o} for the Fourier series is different from the ω_{o} for an L and C .
$\mathrm{k}=3$:

$$
H\left(j 3 \omega_{\mathrm{o}}\right)=\frac{-3^{2}+1}{j 3 \mathrm{k}-3^{2}+1}=\frac{-8}{j 3 \mathrm{k}-8}
$$

Note: $\left(j 3 \omega_{\mathrm{o}}\right)^{2} L C$ is 3^{2} since it was 1^{2} for ω_{o}.

$$
H\left(j 3 \omega_{\mathrm{o}}\right)=\frac{8}{8-j 3 \mathrm{k}}=\frac{1}{1-\frac{j 3 \mathrm{k}}{8}}=\frac{1}{1-j 375}=2.67 \mathrm{~m} \angle 89.85^{\circ}
$$

3. The result is the phasor for frequency $k \omega_{\mathrm{O}}$ (where $k=3$) in output signal.

Input phasor is

$$
V_{i 3}=-j \frac{16}{3 \pi} \mathrm{~V}=\frac{16}{3 \pi} \angle-90^{\circ} \mathrm{V}
$$

Output phasor is

$$
\begin{aligned}
& V_{\mathrm{o} 3}=V_{i 3} H\left(j 3 w_{\mathrm{o}}\right)=\frac{16}{3 \pi} \angle-90^{\circ} \cdot 2.67 \angle 89.85 \mathrm{mV} . \\
& V_{\mathrm{o} 3}=4.53 \angle-0.15^{\circ} \mathrm{mV}
\end{aligned}
$$

4. We convert the output signal phasor back to the time domain, (through the 1 st 3 harmonics, of which only the third harmonic is nonzero).
$v_{\mathrm{o} 3}=4.53 \cos \left(300 \mathrm{kt}-0.15^{\circ}\right) \mathrm{mV}$
