1. (30 points)

a. Calculate the value of rms current, $\mathbf{I}_{\mathrm{rms}}$, flowing through z_{L}.
b. Calculate the complex power, S , for z_{L}. Include appropriate units.
ans: a) $\quad \mathbf{I}_{\mathrm{rms}}=10 \mathrm{~A}_{\mathrm{rms}}$
b) $\mathrm{S}=100+\mathrm{j} 400 \mathrm{VA}$
sol'n: (a) The circuit is a current divider:

$$
\begin{aligned}
& \mathbf{I}_{\mathrm{rms}}=25 \angle 53^{\circ} \mathrm{A}_{\mathrm{rms}} \cdot \frac{2 \Omega}{2 \Omega+1+j 4 \Omega} \\
& \mathbf{I}_{\mathrm{rms}}=25 \angle 53^{\circ} \mathrm{A}_{\mathrm{rms}} \cdot \frac{2 \Omega}{3+j 4 \Omega} \\
& \mathbf{I}_{\mathrm{rms}}=25 \angle 53^{\circ} \mathrm{A}_{\mathrm{rms}} \cdot \frac{2 \Omega}{5 \angle 53^{\circ} \Omega} \\
& \mathbf{I}_{\mathrm{rms}}=\frac{25 \cdot 2}{5} \angle\left(53^{\circ}-53^{\circ}\right) \frac{\mathrm{A}_{\mathrm{rms}} \Omega}{\Omega} \\
& \mathbf{I}_{\mathrm{rms}}=10 \angle 0^{\circ} \mathrm{A}_{\mathrm{rms}}
\end{aligned}
$$

sol'n: (b) $S=\left|\mathbf{I}_{\mathrm{rms}}\right|^{2} z_{L}=|10 \mathrm{~A}|^{2}(1+j 4 \Omega)$
$S=100(1+j 4) \mathrm{VA}$
$\mathrm{S}=100+\mathrm{j} 400 \mathrm{VA}$

