3. (40 points)

\[i(t) = \frac{3}{4} \sqrt{2} \cos (2kt - 135^\circ) A \]

b) \[V_1 = 46.7 \angle 58.8^\circ V \]
sol'n: (a) We assume an ideal transformer since we are only given the turns ratio \(N_1/N_2 \). We want to draw the circuit in the \(s \)-domain with labels for \(I_1, I_2, V_1, \) and \(V_2 \).

\[
\omega = 2k \quad \text{from} \quad V_s = 100 \cos (2k\cdot t) \text{V}
\]

\[
\frac{1}{j\omega C} = \frac{1}{j2k \cdot 5\mu} \Omega = -\frac{j}{10m} \Omega = -j100\Omega
\]

Our circuit diagram in the \(s \)-domain:

![Circuit Diagram](image)

Note: We measure \(V_1 \) and \(V_2 \) with plus signs at dots on transformer.

- \(I_1 \) (primary side) flows into dotted terminal.
- \(I_2 \) (secondary side) flows out of dotted terminal.

For the above definitions of \(I_1, I_2, V_1, \) and \(V_2 \), we have ideal transformer equations without minus signs:

\[
\frac{V_1}{N_1} = \frac{V_2}{N_2} \quad I_1N_1 = I_2N_2
\]

Now we write equations for mesh (current) loops. (We could also use the node-voltage method.)

We observe that \(I = I_2 \) in the top loop, and since \(I_2 \) is flowing on the outer edge of the circuit, (where there is no circuit on the other side to cause a summation of mesh currents through components), we see that \(I \) is also the mesh current for the top loop.

The current mesh equation for the top loop is (the sum of V drops around the loop):

\[
(1) \quad V_2 - I \cdot 10\Omega + V_1 - I (-j100\Omega) = 0 \text{V}
\]

Note: \(I \) must also flow up through C. What \(I \) goes down, must come up. (Otherwise, we would accumulate charge in the bottom half of the circuit.)

The mesh current for the bottom loop will be \(I + I_1 \). This current is flowing on the outside edge of the circuit in the bottom loop.
Our mesh loop equation for the bottom (i.e. sum of V drops around loop) is:

\[-V_1 - (I + I_1)40\Omega - 100\angle0^\circ = 0V\]

or

\[(2) \quad -V_1 + (I + I_1)40\Omega + 100\angle0^\circ = 0V\]

Now we use the ideal transformer equations to eliminate all but two unknowns:

\[V_1 = \frac{N_1}{N_2}V_2, \quad I_1 = \frac{N_2}{N_1}I_2 = \frac{N_2}{N_1}I = \frac{I}{2}\]

Substituting these into Eq. 1 and Eq. 2 gives two equations in two unknowns:

\[(1') \quad V_2 - I \cdot 10\Omega + 2V_2 - I(-j100\Omega) = 0V\]

\[(2') \quad 2V_2 + \left(\frac{I}{2}\right)40\Omega + 100\angle0^\circ = 0V\]

Now we solve for I. From Eq. 2':

\[V_2 = -\left(\frac{3}{2}I \cdot 40\Omega + 100\right) = -30 \cdot I - 50V\]

Eq. 1' rearranged is

\[3V_2 + (-10 + j100)I = 0V\]

By substituting for \(V_2\), and doing the algebra, we find I:

\[3(-30 \cdot I - 50) + (-10 + j100)I = 0V\]

\[(-100 + j100)I - 150 = 0V\]

\[I = \frac{150}{-100 + j100}A = \frac{3}{-2 + j2}\ A = -\frac{3}{2} \frac{1}{1 - j} \ A\]

\[I = -\frac{3}{4}\sqrt{2} \angle45^\circ \ A\]

\[I = \frac{3}{4}\sqrt{2} \angle -180^\circ + 45^\circ \ A\]

\[I = \frac{3}{4}\sqrt{2} \angle -135^\circ \ A\]

\[∴ \quad i(t) = \frac{3}{4}\sqrt{2} \cos (2kt - 135^\circ)A\]
sol'n: (b) We use the idea of reflected impedance for a linear transformer:

The formula for reflected impedance with a linear transformer is

\[Z_r = \frac{\omega^2 M^2}{R_2 + j\omega L_2 + Z_L} \]

Here, we have \(R_2 = 0 \Omega, j\omega L_2 = j20 \Omega, \) and \(Z_L = 35 \Omega + j40 \Omega. \)

\(j\omega M = j15 \Omega \) is the mutual inductance. \(\therefore \omega M = 15 \Omega \)

\[Z_r = \frac{225}{j20 + 35 + j40 \Omega} + \frac{225}{35 + j60 \Omega} = \frac{45}{7 + j12} \Omega \]

Using the equivalent model for primary side, as shown above, we have

\[V_1 = \frac{j30 \Omega + Z_r}{50 + j30 + Z_r} \cdot 100 \angle 0^\circ V \]

\[V_1 = \frac{j30 + \frac{45}{193}(7 - j12)}{50 + \frac{45}{193}(7 - j12)} \cdot 100 \angle 0^\circ V \]

We can factor out a 5 from top and bottom:

\[V_1 = \frac{\frac{j(193)30}{193} + \frac{45(7 - j12)}{193}}{\frac{10}{6} + \frac{45(7 - j12)}{9}} \cdot \frac{20}{1993 + j1050} \cdot 20 \Omega \]

Evaluating the expression and converting to polar form gives

\[V_1 = 46.7 \angle 58.8^\circ V. \]