3. (40 points)

a. Write a numerical time-domain expression for the current $\mathrm{i}(\mathrm{t})$.

b. Calculate $\mathbf{V}_{1}$.
ans: a)

$$
i(t)=\frac{3}{4} \sqrt{2} \cos \left(2 \mathrm{k} t-135^{\circ}\right) \mathrm{A}
$$

b)

$$
\mathbf{V}_{1}=46.7 \angle 58.8^{\circ} \mathrm{V}
$$

sol'n: (a) We assume an ideal transformer since we are only given the turns ratio $\mathrm{N}_{1} / \mathrm{N}_{2}$. We want to draw the circuit in the $s$-domain with labels for $\mathbf{I}_{1}, \mathbf{I}_{2}$, $\mathbf{V}_{1}$, and $\mathbf{V}_{2}$.

$$
\begin{aligned}
& \omega=2 \mathrm{k} \text { from } \mathrm{V}_{\mathrm{S}}=100 \cos (2 \mathrm{k} \cdot \mathrm{t}) \mathrm{V} \\
& \frac{1}{j \omega C}=\frac{1}{j 2 \mathrm{k} \cdot 5 \mu} \Omega=-\frac{j}{10 \mathrm{~m}} \Omega=-j 100 \Omega
\end{aligned}
$$

Our circuit diagram in the $s$-domain:


Note: We measure $\mathbf{V}_{1}$ and $\mathbf{V}_{2}$ with plus signs at dots on transformer.
$\mathbf{I}_{1}$ (primary side) flows into dotted terminal.
$\mathbf{I}_{2}$ (secondary side) flows out of dotted terminal.
For the above definitions of $\mathbf{I}_{1}, \mathbf{I}_{2}, \mathbf{V}_{1}$, and $\mathbf{V}_{2}$, we have ideal transformer equations without minus signs:
$\frac{\mathbf{V}_{1}}{\mathrm{~N}_{1}}=\frac{\mathbf{V}_{2}}{\mathrm{~N}_{2}} \quad \mathbf{I}_{1} \mathrm{~N}_{1}=\mathbf{I}_{2} \mathrm{~N}_{2}$
Now we write equations for mesh (current) loops. (We could also use the node-voltage method.)
We observe that $\mathbf{I}=\mathbf{I}_{2}$ in the top loop, and since $\mathbf{I}_{2}$ is flowing on the outer edge of the circuit, (where there is no circuit on the other side to cause a summation of mesh currents through components), we see that $\mathbf{I}$ is also the mesh current for the top loop.
The current mesh equation for the top loop is (the sum of V drops around the loop):

$$
\begin{equation*}
\mathbf{V}_{2}-\mathbf{I} \cdot 10 \Omega+\mathbf{V}_{1}-\mathbf{I}(-\mathrm{j} 100 \Omega)=0 \mathrm{~V} \tag{1}
\end{equation*}
$$

Note: I must also flow up through C. What I goes down, must come up. (Otherwise, we would accumulate charge in the bottom half of the circuit.)
The mesh current for the bottom loop will be $\mathbf{I}+\mathbf{I}_{1}$. This current is flowing on the outside edge of the circuit in the bottom loop.

Our mesh loop equation for the bottom (i.e. sum of V drops around loop) is:
$-\mathbf{V}_{1}-\left(\mathbf{I}+\mathbf{I}_{1}\right) 40 \Omega-100 \angle 0^{\circ}=0 \mathrm{~V}$
or
(2) $-\mathbf{V}_{1}+\left(\mathbf{I}+\mathbf{I}_{1}\right) 40 \Omega+100 \angle 0^{\circ}=0 \mathrm{~V}$

Now we use the ideal transformer equations to eliminate all but two unknowns:

$$
\mathbf{V}_{1}=\frac{\mathrm{N}_{1}}{\mathrm{~N}_{2}} \mathbf{V}_{2}=2 \mathbf{V}_{2}, \quad \mathbf{I}_{1}=\frac{\mathrm{N}_{2}}{\mathrm{~N}_{1}} \mathbf{I}_{2}=\frac{\mathrm{N}_{2}}{\mathrm{~N}_{1}} \mathbf{I}=\frac{\mathbf{I}}{2}
$$

Substituting these into Eq. 1 and Eq. 2 gives two equations in two unknowns:
(1') $\mathbf{V}_{2}-\mathbf{I} \cdot 10 \Omega+2 \mathbf{V}_{2}-\mathbf{I}(-j 100 \Omega)=0 V$
(2') $\quad \mathbf{2} \mathbf{V}_{2}+\left(I+\frac{I}{2}\right) 40 \Omega+100 \angle 0^{\circ}=0 \mathrm{~V}$
Now we solve for I. From Eq. 2':

$$
\mathbf{V}_{2}=-\left(\frac{\frac{3}{2} \mathbf{I} \cdot 40 \Omega+100}{2}\right)=-30 \cdot \mathbf{I}-50 \mathrm{~V}
$$

Eq. 1 ' rearranged is

$$
3 \mathbf{V}_{2}+(-10+j 100) \mathbf{I}=0 \mathrm{~V}
$$

By substituting for $\mathbf{V}_{2}$, and doing the algebra, we find $\mathbf{I}$ :

$$
\begin{aligned}
& 3(-30 \cdot \mathbf{I}-50)+(-10+j 100) \mathbf{I}=0 \mathrm{~V} \\
& (-100+j 100) \mathbf{I}-150=0 \mathrm{~V} \\
& \mathbf{I}=\frac{150}{-100+j 100} \mathrm{~A}=\frac{3}{-2+j 2} \mathrm{~A}=-\frac{3}{2} \frac{1}{1-j} \mathrm{~A} \\
& \mathbf{I}=-\frac{3}{4} \sqrt{2} \angle 45^{\circ} \mathrm{A} \\
& \mathbf{I}=\frac{3}{4} \sqrt{2} \angle-180^{\circ}+45^{\circ} \mathrm{A} \\
& \mathbf{I}=\frac{3}{4} \sqrt{2} \angle-135^{\circ} \mathrm{A} \\
& \therefore \quad i(t)=\frac{3}{4} \sqrt{2} \cos \left(2 \mathrm{k} t-135^{\circ}\right) \mathrm{A}
\end{aligned}
$$

sol'n: (b) We use the idea of reflected impedance for a linear transformer:


The formula for reflected impedance with a linear transformer is

$$
Z_{r}=\frac{\omega^{2} M^{2}}{R_{2}+j \omega L_{2}+Z_{L}}
$$

Here, we have $\mathrm{R}_{2}=0 \Omega, \mathrm{j} \omega \mathrm{L}_{2}=\mathrm{j} 20 \Omega$, and $\mathrm{Z}_{\mathrm{L}}=35 \Omega+\mathrm{j} 40 \Omega$.
$\mathrm{j} \omega \mathrm{M}=\mathrm{j} 15 \Omega$ is the mutual inductance. $\therefore \omega \mathrm{M}=15 \Omega$

$$
\begin{aligned}
& \therefore Z_{r}=\frac{225 \Omega^{2}}{j 20+35+j 40 \Omega}=\frac{225}{35+j 60} \Omega=\frac{45}{7+j 12} \Omega \\
& Z_{r}=\frac{45}{193}(7-j 12) \Omega
\end{aligned}
$$

Using the equivalent model for primary side, as shown above, we have

$$
\begin{aligned}
& \mathbf{V}_{1}=\frac{j 30 \Omega+Z_{r}}{50+j 30+Z_{r}} \cdot 100 \angle 0^{\circ} \mathrm{V} \\
& \mathbf{V}_{1}=\frac{j 30+\frac{45}{193}(7-J 12)}{50+j 30+\frac{45}{193}(7-J 12)} \cdot 100 \angle 0^{\circ} \mathrm{V}
\end{aligned}
$$

We can factor out a 5 from top and bottom:

$$
\mathbf{V}_{1}=\frac{\mathrm{j}(193) 30+45(7-\mathrm{j} 12)}{(193) \cdot 5 \sigma+\mathrm{j}(193) 3 \sigma+45(7-\mathrm{j} 12)} \cdot 20 \mathrm{G} \cdot 100=\frac{315+\mathrm{j} 5250}{1993+\mathrm{j} 1050} \cdot 20 \mathrm{~V}
$$

Evaluating the expression and converting to polar form gives

$$
\mathbf{V}_{1}=46.7 \angle 58.8^{\circ} \mathrm{V}
$$

