APPENDIX

Bode Diagrams

As we have seen, the frequency response plot is a very important tool
for analyzing a circuit’s behavior. Up to this point. however, we have
shown qualitative sketches of the frequency response without discussing
how to create such diagrams. The most efficient method for gencrating
and plotting the amplitude and phasc data is to use a digital compulter; we
can Tely on it to give us accurate numerical plots of |H(jw)! and 0(jw)
versus w. Howcver, in some situations, preliminary sketches using Bode
diagrams can help ensure the intellipent usce of the companter.

A Bodc diagram, or plot, is a graphical technique that gives a feel
for the frequency response of a circuit. These diagrams are named in
recognition ol the pioncering work done by H. W. Bode.! They are most
useful for circuits in which the poles and zeros of H(s) are reasonably well
separated.

Like the qualitative frequency response plols seen thus far, a Bode
diagram consists of two sepatate plots: One shows how the amplitude of
H (jew} varies with [requency, and the other shows how the phase angle of
H(jw} varies with frecquency. In Bode diagrams, the plots are made on
semilog graph paper for greater accuracy in representing the wide range of
{requency values. In both the amplitude and phase plots, the frequency is
plotted on the horizontal log scale, and the amplitude and phasc angle are
plotted on the linear vertical scalc.

E.1 * Real, First-Order Poles and Zeros

To simplify the development of Bode diagrams, we begin by considering
only cases where all the poles and zeros of A (s) are real and first order.
Later we will present cases with complex and repeated poles and zeros.
For our purposes, having a specific expression for H(s) is helpful. Hence
we base the discussion on

. Kis 4+ z)

H{§) = ———, E.1
. s{s + p1) &

from which
Kljw+z1)

Jolje+ pp)

H(jw) = E€2)

The first step in making Bode diagrams is to put the expression for
H{jw) in a standard form, which we derive simply by dividing out the

IGee H. W Bode, Network Analysis and Feedback Design (Now York: Van Nostrand.,
1945).
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TABLE E.1  Actual Amplitudes and
Their Decibel Values

A N E
0 100 . 30 3162
3 1.41 40 100.00
& 200 60 100
10 316, 80 - 10*

15 562 100 10°

20 1000 120

]O(i o

poles and zeros:

Kzi(l+ ja/z))
piiodl + jw/p;)’
Next we let K, represent the constant quantity Kzi/pi, and at the
same time we express H{jw) in polar form;

H{jw) = E3)

Koll + jow/zi| /¥

H{jw) = - -
Tl 20 ooy pil B
Koll + jow/z1]
= e (3 — 907 - ). E.
Wit jaorp =202 4
From Eq. E 4,
. Kol 4+ jer/zs]
[H(ja)) = / : E£5)
w|l + jo/ pi|
O{w) = yr| — 90° — ). {6
By definition, the phase angles vy and 8, arc
Y = tan " w/z; E7)
g =tan”! w/pl. {£.8)

The Bode diagrams consist of plﬁtling Eq. E.5 (amplitude) and Eq. E6
(phase) as functions of .

E.2 + Straight-Line Amplitude Plots

The amplitude plot involves the multiplication and division of factors asso-
ciated with the poles and zeros of H{s). We reduce this multiplication and
division to addition and subtraction by expressing the amplitude of H{jw)
in terms of a logarithmic value: the dectbel (dB). The amplitude of H(jw)
in decibels is

Agp = 20 l()gll) [ H (Jaw). {£9)

To give you a feel for the unit of decibels, Table E.1 provides a translation
between the actual value of several amplitudes and their values in decibels.
Expressing Eq. E.5 in terms of decibels gives
Ku“ + ‘]'(U/ZH
all + jow/pm|

Ags = 201log,

= 2log o K, +20log,, 1 + jow/z)
—20log 0 —201og,, |1 + jo/pi]. E10)

2 . . § . . . -
“ See Appendix D for more information regarcding the decibel



The key to plotting Eq. E.10 s to plot each term in the equation sep-
arately and then combine the separate plots graphically. The individual
factors are easy to plot because they can be approximated in all cases by
slraight lines.

The plot of 20log,, K, is a horizontal straight line because K, is not a
function of frequency. The value of this term is positive for K, > 1, zero
for K, — 1, and negative for K, < 1,

Two straight lines approximate the plot of 20log,, (1 + jew/z;i. For
small values of w, the magnitude |1 +jw/z1] 18 approximately 1, and there-
fore

log 1+ jw/z |l =0 aswm -0 (E11}

For large values of w, the magnitude {1 + Jw/zi] is approximately w/z;,
and therefore

20log 11+ jew/z] = 20 log,{w/z1) asw — . (E.12)

On a log frequency scale, 20 log o{w/z1) is a straight line with a slope of
20 dB/decade (a decade is a 10-10-1 change in {frequency). This straight
line intersects the 0 dB axis at w = zg. This value of w is called the corner
frequency. “Thus, on the basis of Eqs. E.11 and E.12, two straight lines can
approximate the amplitude plot of a first-order zero, as shown in Fig, E.1.
The plot of —20logyew is a straight line having a slope of
20 dB/dccade that intersects the 0 dB axis al w = 1. Two straight lines
approximate the plot of —201og,, |1 + Jo/pil. Here the two straight lines
intersect on the 0 dB axis at @ = . For large values of w, the straight
line 20Hog 4 (e/ p1) has a slope of —20 dB/decade, Figure [1.2 shuows the
straight-line approximation of the amplitude plot of a first-order pole.
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LR A straight-line approximation of the amplitude plot of a
first-order pole. '

Figure E.3 shows a plot of Eq. E.10 for K, = V10, z; = 0.1 rad/s,
and p; = 5 rad/s. Each term in BEq. B 10 is labeled on Fig. E.3, so you can
verify that the individual terms sum (o create the resultant plot, labeled
20log, 1 H (jw)l.

Example E.1 illustrates the construction of a straight-line amplitude
plet for a transfer function characterized by first-order poles and zeros.
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NCRIE A straight-line approximation of the amplitude plot for Eq. E.10.



For the circuit in Fig. E.4:

a) Compute the transfer function, H(s).

b) Construct a straight-line approximation of the
Bode amplitude plot.

¢) Caleulate 20log, |H{jw)| at @ — 50 rad/s and
ew = 1000 rad’s.

d) Plot the values computedin (c) on the straight-
line graph; and

e) Suppose that v;(r) = Scos{500¢ + 15%) V, and
then use the Bode plot you constructed to pre-
dict the amplitude of v,(¢) in the steady state.

SOLUTION

a) Transforming the circuit in Fig. E4 into the
s-domain and then using s-domain voltage di-
vision gives )

(R/L)s
2+ (R/L)s + ﬁ '

Hs) =

Substituting the numerical valucs from the cir-
cuit, we gel

110s 110s

H(s) = - = :
)= 2 1105 7 1000 (s + 10)(s + 100)

b) We begin by writing H(jw) in standard form:

0.11 e

HUO) = T (w10 1 @/100)]

}
YL |
I

IR N:-A-X:2 The circuit for Example E.1.

The expression for the amplitude of H(jw) in
decibels is

Agp = 20 IOgm 1H(jw)|
= 20108, 0.11 +201og4 [ jo!
@ w
- 14 joaed — y Thadl
Zﬂlogmt +J]01 201051011+110()|

Figure E.5 shows the straight-line plot. Each
term contribuling to the overall amplitude is

identified.
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)] The straight-line amplitude plot for the transfer function

of the circuit in Fig. E4.
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, Bode Diagrams

c} We have mately —12.5 dB. Therefore,
0.11{;50 Al = 107125720 _ 24
HSOy = — O 1HG0) 1Al
(I + 5+ j0.5)
and
= 0.9648 /—~15.25°,
: = [A|Vp = (024)(5} =119 V.
20logyy | H(i50)] = 20 log, 0.9648 Vimo = [AlVmi = 02H)(5) =119V
= —(.311 dB; We can compute the actual value of |H(jw)
by substituting @ = 500 into the equation for
0.11(71000 PRI
H(1000) = 120710000 [H(jew)l:
' (L+ j100)(1 + j10)

0.11(;500)

= - H{[300) = ———————
=0.1094 /--83.72"; {7500 a1 50 +75)

20log;, 0.1094 = -19.22 dB.

=022 /-T77.54".

Thus. the actual output voltage magnitude {or
. the specified signal source at a frequency of
d) See Fig E.5. 500 radss is
e) As we can see from the Bode plot in Fig. E.5,
the value of Agp at @ = 500 rad/s is approxi- Vo = [A| V= (0.22)(5) = 1.1 V.

E.3 * More Accurate Amplitude Plots

We can make the straight-line plots for first-order poles and zeros more
accurale by correcting the amphtude values at the corner frequency, one
half the corner frequency, and twice the corner (requency. At the corner
frequency, the actual value in decibels is

Aun, — £201og |1+ 71

= +2010g,4 v2

s +3 dB. E13)

The actual value at one half the corner frequency s

1
Agp,., = F20log, ‘1 + jz‘

-

= 320 1og,, v5/4

=+ dB. (£14)



At twice the corner frequency, the actual value in decibels is

Ady, = £20Hog, |1 + /2|
= +20log,, NG
~ £7 dB. (£.15)

In Eqgs. E.13-E.15, the plus sign applies (o a first-order zero, and the minus
sign applics to a first-order pole. The straight-line approximation of the
amplitude plot gives O dB at the corner and one half the corner frequencies,
and +6 dB at twice the corner frequency. Hence the corrections are 43 dB
at the corner frequency and £1 dB at both once half the corner lrequency
and twice the corner frequency. Figure E.6 summarizes these corrections.

A 2-10-1 change in frequency is called an octave. A slope of
20 dB/decade is equivalent Lo 6.02 dB/octave, which [or graphical purposes
is equivalent to 6 dB/octave. Thus the corrections enumerated correspond
LO O11e velave L)U]UW and one octave above the corncr frcqucncy.

if the poles and zeros of H(s) are well separated, inserting thesc correc-
tions into the overall amplitude plot and achieving a reasonably accurate
curve is relatively easy However . if the poles and zeros are close together,
the overlapping corrections are dilficult to evaluate, and you're better off
using the straight-line plot as a first estimate of the amplitude characteris-
tic. Then use a computer to refine the calculations in the frequency range
of interest.
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E.4 ¢ Straight-Line Phase Angle Plots

We can also make phase anglc plots by using straight-line approximations,
The phase angle associated with the constant K, is zero. and the phase
angle associated with a first-order zero or pole at the origin is a constany
190", For a first-order zero or pole not at the origin, the straight-line
approximations are as follows:

¢ For {requencies less than one tenth the corner frequency, the phase
angle is assumed Lo be zero.

* For frequencies greater than 10 times the corner frequency, the phase
angle is assumed to be 90,

* Between one tenth the corner frequency and 10 times the corner fre-
quency, the phase angle plot is a straight Fne that goes through (0
at one-tenth the corner frequency, 457 at the corner frequency, and
$90 at 10 times the corner frequency.

In all these cases, the plus sign applics to the first-order zero and the minus
sign to the first-order pole. Figure E.7 depicts the straight-line approxi-
mation {or a first-order zero and pole. The dashed curves show the exact
variation of the phase angle as the frequency varies. Note how closcly the
straight-line plot approximates the actual variation in phase angle. The
maximum deviation between the straight-line plot and the actual plot is
approximately 67,
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A straight-line approximation of the phase angle plot for Eq. B.1.
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Figurc E.¢ depicts the straight-line approximalion of the phase angle of
the transfer function given by Eqg. B.1. Equation B.6 gives the cquation for
the phase angle; the plot corresponds to z1 = 0.1 rad/s, and gy = 5 rad/s.

An illustration of a phase angle plotusing astraight-fine approximation
is given in Example E.2.

a) Make a straight-line phase angle plot for the
transfer [lunction in Example E.1.

b) Compute the phase angle #(w} at @ = 50, 500,
and 1000 rad/s.

¢) Plot the values of (b) on the diagram of (a).

d) Using the resulis from Example E.1(e) and (b)
of this example, compute the stcady-state out-

put voltage if the source voltage is given by
vi{t) = 10cos(500r — 259 V.

SOLUTION

a) From Examplc E.l,

] 0.1l jm)
[1+ jw/10][1 + jlw/100)]

_ 0.11]jal o
T /1o +f(w/100)1[(—1"”——'3‘~@—)'

Continued ®

H(jw) =




Bode Diagrams

Therefore, ¢) Sce g E9.
Alen) = fry — By — fa, d) We have

where ¥, = 80, B = tan"(w/'l(}), and fiz =

tan~'(/100). Figure E.9 depicts the straight- Voo == | H (5000 Vs
line approximation of &(w).
= (0.22)(10)
b) We have
=22V,
H{j50) =096 /—15.25°
H(j500) = 0.22 /-77.54°, and
H{j1000) =0.11 /-83.72". 8, = 0(w) + 0
Thus, = 7754 ~ 257
a(j50) = —15.25°., = —102.54°,
G500 = —77.54°, Thus,
and
#1000y = —83.72", U lF) = 2.2 cos(S00 — 102.54%) V.
P I
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“f = —tan” (w/L0) N N
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RLITCR A straight-line approximation of 8(w) for Example E.2.



