EXAM \#1 - Solution

Problem 1 - (43 points)

- Both amplifiers have the following characteristics:
$\mathrm{A}_{\mathrm{vo}}=40$
$\mathrm{R}_{\mathrm{i}}=2 \mathrm{k} \Omega$
$\mathrm{R}_{\mathrm{o}}=4 \mathrm{k} \Omega$
Clipping levels: $\mathrm{L}= \pm 12 \mathrm{~V}$ (unloaded)

(a) Redraw this 2 stage amplifier using the amplifier model. Make sure to label $\mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{3}$, and V_{L} on the schematic. (15 points)

(b) Find $A_{v}=\frac{v_{L}}{v_{s}}$. Express your answer as a ratio(V/V) and in dB . [Round to a whole number] (10 points)

$$
\frac{v_{L}}{v_{s}}=A_{v}:=\left(\frac{R_{i 1}}{R_{S}+R_{i 1}}\right) \cdot A_{v o 1} \cdot\left(\frac{R_{i 2}}{R_{o 1}+R_{i 2}}\right) \cdot A_{v o 2} \cdot\left(\frac{R_{L}}{R_{o 2}+R_{L}}\right)
$$

$\mathrm{R}_{\mathrm{il}}=\frac{1}{\frac{1}{2 \mathrm{k}}+\frac{1}{2 \mathrm{k}}}=1 \cdot \mathrm{~K}$

$$
\mathrm{R}_{\mathrm{ol}}=4 \mathrm{k}+2 \mathrm{k}=6 \mathrm{k}
$$

$\mathrm{A}_{\mathrm{V}}=\frac{1 \mathrm{k}}{1 \mathrm{k}+1 \mathrm{k}} \cdot 40 \cdot \frac{2 \mathrm{k}}{6 \mathrm{k}+2 \mathrm{k}} \cdot 40 \cdot \frac{100}{100+4000}=4.878 \quad($ rounded $=5 \mathrm{~V} / \mathrm{V})$ or $20 \cdot \log (5)=13.979$
(c) For the input V_{S} as shown, sketch (make the peaks exact and estimate between the peaks) the output at V_{L} on the graph below. (8 points)
Amplitude => peak will be at: gain (from 1(b)) *Vs_peak=5*Vs_peak =5(+1)=5

(d) Evaluate the overall current gain. ($\left(\frac{i_{o}}{i_{s}}\right)$ [round to the nearest whole number and express as A/A]. (10
points)
$\mathrm{i}_{\mathrm{o}}=\frac{\mathrm{V}_{\mathrm{L}}}{\mathrm{R}_{\mathrm{L}}}$

$$
\mathrm{i}_{\mathrm{s}}=\frac{\mathrm{V}_{\mathrm{s}}}{\left(\mathrm{R}_{\mathrm{s}}+\mathrm{R}_{\mathrm{i} 1}\right.} \mathrm{A}_{\mathrm{i}}=\frac{\mathrm{Vo}_{0}}{\mathrm{Vs}_{\mathrm{s}}} \cdot \frac{\mathrm{R}_{\mathrm{s}}+\mathrm{R}_{\mathrm{i} 1}}{\mathrm{R}_{\mathrm{L}}}=\mathrm{A}_{\mathrm{v}} \cdot \frac{1 \mathrm{k}+1 \mathrm{k}}{100}=\mathbf{1 0 0} \mathbf{A} / \mathbf{A}
$$

Problem 2-(20 points)

$\mathrm{H}(\mathrm{s})=\frac{(\mathrm{s}+100) \cdot(\mathrm{s}+1 \mathrm{k})}{(\mathrm{s}+10) \cdot(\mathrm{s}+10 \mathrm{k})}$

$$
\text { Starts at } H(0)=\left(100^{*} 1 \mathrm{k}\right) /\left(10^{*} 10 \mathrm{k}\right)=1 \text { so } 20 \log (1)=0 \mathrm{~dB} \text {, angle }=0
$$

Remember: the location for corner frequency is when real=imaginary. The shape (i.e. $+20 \mathrm{~dB} / \mathrm{dec}$ or $-20 \mathrm{~dB} / \mathrm{dec}$.) of the signal at that location depends on the location of the pole/zero at that location. At w=10: a LHP pole => -20dB/dec., 90deg.; w=100: a LHP zero => +20dB/dec., +90deg.; w=1k: a LHP zero=> +20dB/dec., +90deg.; w=10k: a LHP pole=> 20dB/dec., -90deg.

(rad/sec.)

Problem 3-(37 points)

(a) Assume all operational amplifiers are ideal

$$
\mathrm{V}_{1}=10 \mathrm{mVpp}, \mathrm{~V}_{2}=20 \mathrm{mVpp}, \mathrm{~V}_{3}=50 \mathrm{mVpp}
$$

(i) What is the voltage value at $\mathrm{V}_{\text {o1 }}($ express as Vpp$)$? ($\mathbf{1 0}$ points)

This is a weighted summer:
Vo1=-(V2(2k/4k) $+\mathbf{V 1}(2 k / 1 k))=-(10 m+20 m)=-30 m V p p$
(ii) What is the voltage value at Vo (express as Vpp)? ($\mathbf{1 0}$ points)

$$
\begin{gathered}
\mathrm{V}_{\mathrm{id}}:=\mathrm{V}_{3}-\mathrm{V}_{\mathrm{ol}} \quad \mathrm{~V}_{\mathrm{o}}:=\frac{\mathrm{R}_{4}}{\mathrm{R}_{3}} \cdot\left(1+\frac{2 \cdot \mathrm{R}_{2}}{2 \cdot \mathrm{R}_{1}} \cdot \mathrm{~V}_{\mathrm{id}}\right. \\
\mathrm{V}_{\mathrm{o}}=1 \cdot\left(1+\frac{20 \mathrm{k}}{500} \cdot(50 \mathrm{~m}-(-30 \mathrm{~m}))=\mathbf{1 . 6 8} \mathbf{V}\right.
\end{gathered}
$$

(b) All operational amplifiers are NOT ideal and have the following characteristics:
(i) Explain the purpose of the R_{1} resistor? (5 points)

It reduces the error on the output of the amplifier due to the input bias currents. The value of the resistor is the value of the de resistance seen by the inverting terminal.
(ii) When $\mathrm{V}_{1}=\mathrm{V}_{2}=\mathrm{V}_{3}=0$ calculate the voltage that will be observed at $\mathrm{V}_{\mathbf{0 1}}$. (12 points) \{Hint: there are two effects\}
Input offset voltage: $\quad V_{\text {ios }}=2.0 \mathrm{mV}$
Input offset current:
$\mathrm{I}_{\mathrm{os}}=100 \mathrm{nA}$
$\operatorname{Vo1}$ (due to offset voltage) $=\mathrm{V}_{\mathrm{os}} \cdot 1+\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}=.02 \cdot\left[1+\left(\frac{2000}{800}\right)\right]=0.07$
Vol (due to input offset current) $=\mathrm{I}_{\mathrm{os}} \cdot \mathrm{R}_{2}=100 \cdot 10^{-9} \cdot 2000=2 \cdot 10^{-4}$

Vol $($ total $)=7 \mathrm{~m}+200 \mu=7.2 \mathrm{mV}$

Problem 1 - (25 points)
Assume both diodes are identical and ideal. Verify that your assumption for the diode operation(i.e. on or off) are correct.
a) 9 points - The current I_{1}
b) 9 points - The current I_{2}
c) 7 points - The voltage Vo

Assume "on":

$$
I_{1}, I_{2}>0 \quad \therefore \text { diodes on }
$$

$$
\begin{aligned}
& -12+I(k)+V_{0}=0 \Rightarrow I=\frac{\left(12-V_{c}\right)}{1 k} \\
& I_{2}=\frac{V_{c}}{2 k} \\
& -V_{c}+2 V+I_{1}(1 K)=0 \\
& I_{1}=\frac{\left(V_{0}-2 V\right)}{1 K} \\
& I=I_{1}+I_{2} \Rightarrow \frac{\left(12-V_{0}\right)}{1 k}=\frac{\left(V_{0}-2 V\right)}{1 k}+\left(\frac{V_{0}}{2 k}\right) \\
& \Rightarrow V_{0}=\frac{\left(\frac{12}{1 k}\right)+\left(\frac{2}{1 k}\right)}{\left(\frac{1}{1 k}+\frac{1}{1 k}+\frac{1}{2 k}\right)}=\frac{(0.014)}{2.5 \mathrm{~m}}=5.6 \mathrm{~V} \\
& I=\frac{(12-5.6)}{1 k}=6.4 \mathrm{~mA}, \quad I_{2}=\frac{5.6}{2 k}=2.8 \mathrm{~mA} \\
& I_{1}=\frac{\left(V_{0}-2 V\right)}{1 k}-\frac{(5.6-2)}{1 k}=3.6 \mathrm{~cm} A
\end{aligned}
$$

Problem 2-(25 points)
Referring to the in junction diode, determine the following: (5 points each)

1) For p-type material:
a) The majority carrier(holes or electrons) is holes (positive charge)
b) As the temperature DECREASES, what happens to the number of MAJORITY carriers in this p-type material? stay the same

$$
P_{p o}=N_{A}
$$

2) For p-type material:
a) The minority carrier is
electrons (negative charge)
b) As the temperature DECREASES, what happens to the number of MINORITY carriers in this p-type material? Decrease $n_{p o}=\frac{n_{i}^{2}}{N_{A}}$

$$
n_{i}^{2} \times T^{3} \quad \therefore \text { dependent on } I
$$

3) As the temperature INCREASES, what happens to the number of unbound holes in the n-type material? increases
4) As the temperature INCREASES, what happens to the reverse saturation current I_{s} ?
increases $\rightarrow I_{s}$ is created from the movement of minority carriers.
5) Explain how the diffusion current, I_{D}, is created.
I_{Δ} is created from the movement of majority coiners

Problem 3-(10 points)
a) Use the constant voltage drop diode model with $\mathrm{V}_{\mathrm{DO}}=0.7$
i) 2.5 points - Solve the circuit for I
ii) 2.5 points - Solve the circuit for Vo

$$
\begin{aligned}
& +I(2 k)+0.7+0.7-15=c \\
& \Rightarrow I=\frac{(15-1.4)}{2 k}=6.8 \mathrm{~mA} \\
& I>0 \quad \therefore \text { diches ci } \\
& -V_{2} . I(2 k)=C \Rightarrow V_{i}=-I(2 k)=-12.6 V
\end{aligned}
$$

Problem 4-(15 points)

Given $\quad V s=15+3 \sin (\omega t) V$
Assume $\mathrm{V}_{\mathrm{D}}=0.7 \mathrm{~V}, \mathrm{n}=2$, and $\mathrm{V}_{\mathrm{T}}=25 \mathrm{mV}$
Assume identical diodes
Use the constant voltage drop method when appropriate
c) 3 points - Determine the DC component of the diode current, I_{D}.
d) 3 points - Determine the DC component at the output, $\mathrm{V}_{\text {out }}$.
e) 3 points - Determine the AC component of the diode current, i_{d}.
f) 3 points - Determine the AC component at the output, $V_{\text {out }}$.
g) 3 points - What is the total output for Vout.

DC model: Assume "on"

$V_{\text {out }, ~}$ $=0.7 \mathrm{~V}$
AC model. $r_{d}=\frac{n V_{T}}{I_{D}}=\frac{(2)(25 \mathrm{~m})}{13.6 \mathrm{~m}}=3.7 \Omega$

$$
\begin{aligned}
& -3 \sin \omega t+i_{d}(k+3.7+3.7)=0 \\
& i_{d}=\frac{3 \sin \omega t}{1007.4}=3 \times 10^{-3} \sin \omega t \\
& V_{\text {out, }} A C=i_{d}(3.7)=11.1 \times 10^{-3} \sin \omega t
\end{aligned}
$$

Total Vout: $0.7+11.1 \times 10^{-3} \sin \omega t$

Problem 1 - (30 points)
Assume all diodes are identical and have $\mathrm{V}_{\mathrm{DO}}=0.7 \mathrm{~V}$. Use the constant voltage drop method. Verify that your assumption for the diode operation(ie on or off) are correct. Find the following making sure you find the correct operation of the diodes.
a) State your assumptions (diode is on/off):

D1-on
D2-off
b) The current I_{1}
c) The current I_{2}
d) The current I_{3}
e) The voltage Vo
f) Your verification:

$$
+1 k\left(I_{1}\right)-10+V_{0}-7=0 \Rightarrow I_{1}=\frac{10-V_{0} .7}{1 K} V_{0}-5
$$

$$
=\frac{10-6.65-.7}{1 k}=2.65 \mathrm{~m}
$$

$$
-v_{0}+5+I_{3}(1 \mathrm{~K})=0 \Rightarrow I_{3}=\frac{\left(V_{0}-5\right)}{1 k}=\frac{6.65-5}{1 \mathrm{k}}=1.65 \mathrm{~m}
$$

$$
I_{2}=0
$$

$$
I_{1}=I_{3}+\operatorname{lm}
$$

$$
\frac{\left(9.3-V_{0}\right)}{k}=\frac{\left(V_{0}-5\right)}{k}+1 \mathrm{~m}
$$

$$
v_{0}\left(\frac{1}{k}+\frac{1}{k}\right)=\frac{5}{1 k}+\frac{9.3}{1 k}-1 m
$$

$$
V_{0}=\frac{13.3 \mathrm{~m}}{2 \mathrm{~m}}=6.65 \mathrm{~V}
$$

verification:

$$
\begin{aligned}
I_{1}>0 & \Rightarrow \text { on } \\
+V_{D}+V_{0} & =0 \Rightarrow V_{D}=-6.65<0
\end{aligned}
$$

D2 "on", DI"on"

$$
\begin{aligned}
& +I_{1}(1 \mathrm{k})-1.0+0.7+V_{0}=0 \\
& I_{1}=\frac{-V_{0}+9.3}{1 \mathrm{k}}=10 \mathrm{~m} \geq 0 \quad 0 \mathrm{~N}
\end{aligned}
$$

$$
-v_{0}-0.7=0
$$

$$
V_{0}=-0.7 \mathrm{~V} .
$$

$$
I_{3}=\frac{\left(V_{0}-5\right)}{\mathbb{K}}=-5.7 \mathrm{~m}
$$

$$
I_{2}=I_{3}+1 m-I_{1}
$$

Not valid assumptions

$$
I_{2}=-5.7 m+1 m-10 \mathrm{~m}=-14.7<0
$$

DI"off", D2,"On"

$$
\begin{aligned}
& V_{0}=-0.7 \\
& I_{3}=\frac{\left(V_{0}-5\right)}{k}=-5.7 \mathrm{~m} \\
& I_{2}=I_{3}+1 \mathrm{~m}=-4.7 \mathrm{~m}<0 \Rightarrow \text { Not on } \\
& \begin{array}{l}
-V_{0}+5-1 m(1 k)=0 \\
V_{0}=5-1=4 \mathrm{~V} \\
-V_{0}-V_{D 1}+10=0 \\
V_{01}=10-V_{0}=6 \mathrm{~V}<0 \\
\therefore \text { Not off }
\end{array}
\end{aligned}
$$

Problem 2 - (25 points)

a) Sketch the Bode (both magnitude \& phase) plot for: \{label your axis and show all your work\}

$$
\mathrm{H}(\mathrm{~s})=\frac{(100)(s+100)(s+10)}{\left(s^{2}\right)(s+10,000)}
$$

b) What is the estimated magnitude value at $\omega=1 \mathrm{rad} / \mathrm{sec}$:

$$
\begin{aligned}
& K=H(0)=\frac{100(100)(10)}{10,000}=10 \\
& \quad w_{\text {start }}=1 \\
& n=-2
\end{aligned}
$$

c) For the magnitude plot, what is the slope of the line going through $\omega=1 \mathrm{rad} / \mathrm{sec}$:

$$
n * 20 \mathrm{~dB} / \mathrm{dec}=-40 \mathrm{~dB} / \mathrm{dec} .
$$

d) What is the estimated phase value at $\omega=1 \mathrm{rad} / \mathrm{ser}^{-}$.

$$
K>0 \quad \therefore n * 90^{\circ}=-180 \text { degrees }
$$

e) For the phase plot, what is the slope of the line to the left of $\omega=1 \mathrm{rad} / \mathrm{sec}$:

O
f) For the phase plot, what is the slope of the line to the right of $\omega=1 \mathrm{rad} / \mathrm{sec}$:

$$
+45^{\circ} \text { slope/dec. }
$$

g) List the three frequencies other than 0 where the bode plots will have a change in slope (or value):

$$
\begin{aligned}
& w=10,000 \\
& w=100 \\
& w=10
\end{aligned} \left\lvert\, \begin{aligned}
& : \text { neg. pole } \rightarrow w=1,00 \rightarrow 100,000:-45^{\circ} \\
& :+20 \text { dBidec. } \rightarrow w=10 \rightarrow 1,000:+45^{\circ} \\
& :+20 \text { dBidec. } \rightarrow w=1 \rightarrow 100:+45^{\circ}
\end{aligned}\right.
$$

(a) For the circuit above, assume all operational amplifiers are ideal

(i) What is the voltage value at $V_{o 1}$ (express as $\left.V p p\right) ? \quad V_{1}=20 \mathrm{~m} V_{P P}$
(ii) What is the voltage value at Vo (express as Vip)?

$$
\begin{aligned}
& V_{01}=\left(1+\frac{8 k}{2 k}\right) V_{1}=5\left(V_{1}\right)=100 \mathrm{~m} V_{p p} \\
& V_{0}=\frac{20 k}{10 k}\left(1+\frac{10 k}{1 k}\right)\left(V_{01}-V_{2}\right)=2(1+10)\left(100 \mathrm{mV}_{p p}-200 \mathrm{~m} V_{p p}\right) \\
& V_{0}=2(11)\left(-100 m V_{p p}\right)=-2.2 \mathrm{~V}
\end{aligned}
$$

(h) Assume all operational amplifiers are ideal FXCFPT amplifier A1 which is LM307. Use the attached datasheet to determine the following:
(i) Assume that you have no Slew Rate distortion on your output signal. Neglecting the input $\left(V_{2}=0\right)$ bias current, calculate the voltage that will be the maximum value observed at V_{0} when $\mathrm{V}_{1}=0 \mathrm{~V}$ at room temperature.

$$
\begin{aligned}
v_{01} & =v_{8 s}(1+4)=7.5 \mathrm{~m}(5)=0.375 \mathrm{~V} \\
v_{0} & =2(1+10)(0.375-0)=8.25 \mathrm{~V}
\end{aligned}
$$

(ii) Explain in detail, by giving exact values and drawing any schematics, the technique used to reduce the input bias current for amp A1.

Problem 4-(20 points)

Given Assume $\mathrm{V}_{\mathrm{DO}}=\mathbf{0 . 6 V}, \mathrm{n}=1$, and $\mathrm{V}_{\mathrm{T}}-25 \mathrm{mV}$ Assume identical diodes
Use the constant voltage drop method when appropriate
a) Determine the DC componentsof the diode current through $\mathrm{D} 1, \mathrm{I}_{\mathrm{DI}}$)
b) Determine the DC component at the output, V_{o}.
c) Determine the $\mathbf{A C}$ component of the diode current through $\mathrm{D} 3, \mathrm{i}_{\mathrm{d}}$.
d) Determine the AC component at the output, V_{o}.
e) What is the total output for V_{0}.

Assume: D1-on, D3-on, D2-off
a.

$$
-10+I_{D 1}(75 k)+.6 V+I_{01}(20)+6-10=0
$$

$$
I_{01}=\frac{20-1.2}{75 ; 200}=250 \mu
$$

Ir also goes through D3

$$
\left.I_{D 1}>0 \quad \therefore \quad D 1, D 3 \text { on }\right)
$$

b. $-V_{0}+I_{01}(200)+0.6-10=0$

$$
D 2:-V_{0}-V_{02}-15=0
$$

$$
V_{0}=I_{01}(200)-9.4=-9.35 \mathrm{~V}
$$

$$
\begin{gathered}
V_{D 2}=-9.35-15 \\
V_{D 2}=-24.35<0 \\
\therefore 0 F F
\end{gathered}
$$

c. $\left.i_{d}\right\}_{375 k}^{+\sin (60 t)} \quad V_{\text {ac }}=\frac{\sin (60 t)\left(200+r_{d}\right)}{\left(75,200+r_{d}+r_{d}\right)}$

$$
r_{d}=\frac{n V_{T}}{I_{0}}=\frac{(1 \times 25 \mathrm{~m})}{250 \mu}=100
$$

$$
\therefore \quad V_{c a c}=\frac{\sin (60 t)(300)}{(75,400)}=4 m \sin 60 t
$$

$$
i d=\frac{\sin (60 t)}{75,200+200}=13.3 \mu \sin (60 t)
$$

check validity:

$$
\begin{array}{r}
V_{d_{\text {ac }}}=i_{d}(100)=1.3 \mathrm{~m} \sin (60 t)<10 \mathrm{mV} \\
V_{\text {ototal }}=-9.35+4 \mathrm{~m} \sin (60 t)
\end{array}
$$

