ECE2100 Exam 2

This is an open book, and notes exam. You may use a calculator.

NAME:_____

I certify that the work below is my own.

Signature:_____

Problem 1

Use: $V_t=1V$ $k_n'(W/L)=2A/V^2$ $\lambda=0$ for all transistors The 0.25A current source is not ideal and may have a voltage drop across it. All caps are large.

Solve the circuit for the DC values of: (a) V_{D2} (b) V_{s1} (c) Is

Problem 2:

 $v_{sig} = 0.01 \sin(\omega t)$. Does this circuit operate as an AC amplifier? If so, what is the gain, $\frac{Vo}{Vsig}$, of the following circuit in terms of VDD?

Problem 3

Use: $V_t = 1V$ $k_n'(W/L)=1 mA/V^2$ v_{sig} is an AC source Transistor 1 has DC values: VGS=5V, ID=8mA Transistor 2 has DC values: VGS=5V, ID=8mA Transistor 3 has DC values: VGS=3V, ID=2mA

For the following hybrid- π equivalent circuit, find the following values:

(a) R_i (input resistance – ignore the 50ohm and Vsig)

Vo

Problem 4

For the circuit shown below, draw the AC small-signal equivalent circuit (use hybrid- π or model T). Make sure that everything is labeled in terms of the transistor number. (e.g. g_{n1} , v_{gs2} , etc.). $I \neq 0$ for all transistors. v_{sig} is an AC source.

