ECE2280 Review For EXAM 2

- 1. Understand the basic operation of a MosFet:
 - 3 regions of operation: cutoff, triode, saturation and know all current equations associated with them.
 - the I_D versus V_{DS} graph
- 2. Understand the bias point concept for linear amplification.
- 3. Be able to separate the DC and AC analysis for a circuit containing MosFets.
- 4. Be able to analyze a circuit (with or without cap in it) containing MosFets for DC operation.
- 5. Be able to draw a small-signal model of MosFets in a circuit.
- 6. Be able to analyze a small-signal circuit to find overall gain, midband gain,

input resistance, and output resistance.

7. Determine ω_L and ω_H or f_L and f_H .

Example 1

(e) Assuming that the transistor amplification is $V_o/V_{sig} = 3V/V$. Assume the input frequency is operating within the circuits operating range. What is the **total** (AC and DC) instantaneous output for V_o using the V_{sig} value stated above.

 $Vo_{total} = 6 + 6msin(20t)$

Example 2

Use: $V_t=2V$ $k_n'(W/L)=10mA/V^2$ V_{sig} is an AC source Transistor 1 has DC values: $V_{GS}=3V$ Transistor 2 has DC values: $V_{GS}=12V$ $\lambda=0$ (for all transistors) and assume all transistors are saturated

For the following hybrid- π equivalent circuit, find the following values:

- (a) R_{in} (input resistance –ignore the input source, Vsig)
- (b) R_{out} (output resistance-ignore R_L {no load is connected})
- (c) ideal midband gain, $\frac{Vo}{Vsig}$

Rin=980hms, Rout=10k, Vo/Vsig=10V/V

Example 3

For the circuit shown below, **draw** the AC small-signal equivalent circuit(use hybrid- π or model T). Make sure that everything is labeled in terms of the transistor number. (e.g. g_{m1} , v_{gs2} , r_{o1} , etc.). $\lambda \neq 0$ for all transistors.(i.e. draw the small-signal with r_o included). v_{sig} =0.005sin(20t) AC. Draw the small-signal equivalent circuit **WITH** capacitors shown.

Example 4

Use: gm=2.2mA/V, $\lambda=0$, and Cgs=Cgd=5pF.

What is the operating range for the amplifier below(in Hz)?

478Hz to 5.3MHz

Example 5

 $V_t=2V$, $\lambda=0$, $k_n'(W/L)=2mA/V^2$. Does this circuit operate as a **linear** AC amplifier? If so, what is the gain, $\frac{Vo}{Vsig}$, of the following circuit? If not, explain why.

Vsig = $2.5 + \sin(\omega t)$.(assume that ω is in the operating range of the circuit). If not, explain why.

No, does not amplify.