1. Understand the basic operation of a MosFet:

- 3 regions of operation: cutoff, triode, saturation and know all current equations associated with them.
- the I_{D} versus V_{DS} graph

2. Understand the bias point concept for linear amplification.
3. Be able to separate the DC and AC analysis for a circuit containing MosFets.
4. Be able to analyze a circuit (with or without cap in it) containing MosFets for DC operation.
5. Be able to draw a small-signal model of MosFets in a circuit.
6. Be able to analyze a small-signal circuit to find overall gain, midband gain, input resistance, and output resistance.
7. Determine ω_{L} and ω_{H} or f_{L} and f_{H}.

Example 1

Use: $\quad \mathbf{V}_{\mathrm{t}}=2 \mathrm{~V}$
$k_{n}{ }^{\prime}(W / L)=6 m A / V^{2}$
$\lambda=0$
$\mathbf{V}_{\text {sig }}=\mathbf{3}+\mathbf{0 . 0 0 2} \sin (20 t)$
For DC analysis, assume that the capacitors act as an open. The current source is not ideal and has a voltage drop across it.
(a) Solve for the DC currents:
a. $I_{D 1}=I_{S 1}=3 \mathrm{~mA}$
b. $I_{S 2}=I D 2=2 \mathrm{~mA}$
(b) Solve for the DC voltages:
a. $\quad V_{G 2}=2 V$
b. $V_{S 2}=-0.82 \mathrm{~V}$
c. $V_{S 1}=-3 \mathrm{~V}$
(c) Verify that transistor M2 is saturated.
(d) State the DC bias point for transistor M1.

(e) Assuming that the transistor amplification is $\mathrm{V}_{\mathrm{o}} / \mathrm{V}_{\text {sig }}=3 \mathrm{~V} / \mathrm{V}$. Assume the input frequency is operating within the circuits operating range. What is the total (AC and DC) instantaneous output for V_{o} using the $\mathrm{V}_{\text {sig }}$ value stated above.

$$
V_{\text {total }}=6+6 m \sin (20 t)
$$

Example 2

Use: $\quad \mathrm{V}_{\mathrm{t}}=2 \mathrm{~V}$
$\mathrm{k}_{\mathrm{n}}{ }^{\prime}(\mathrm{W} / \mathrm{L})=10 \mathrm{~mA} / \mathrm{V}^{2}$
$V_{\text {sig }}$ is an AC source
Transistor 1 has DC values: $\mathrm{V}_{\mathrm{GS}}=3 \mathrm{~V}$
Transistor 2 has DC values: $\mathrm{V}_{\mathrm{GS}}=12 \mathrm{~V}$
$\lambda=0$ (for all transistors) and assume all transistors are saturated
For the following hybrid- π equivalent circuit, find the following values:
(a) $\mathrm{R}_{\text {in }}$ (input resistance -ignore the input source, Vsig)
(b) $\mathrm{R}_{\text {out }}$ (output resistance-ignore R_{L} \{no load is connected\})
(c) ideal midband gain, $\frac{V o}{V s i g}$

Rin $=980 h m s$, Rout $=10 \mathrm{k}, \mathrm{Vo} / \mathrm{Vsig}=10 \mathrm{~V} / \mathrm{V}$

Example 3

For the circuit shown below, draw the AC small-signal equivalent circuit(use hybrid- π or model T). Make sure that everything is labeled in terms of the transistor number. (e.g. $\mathrm{g}_{\mathrm{m} 1}, v_{\mathrm{gs} 2}, \mathrm{r}_{\mathrm{ol}}$, etc.). $\lambda \neq \mathbf{0}$ for all transistors.(i.e. draw the small-signal with r_{o} included). $v_{\text {sig }}=0.005 \sin (20 \mathrm{t}) \mathrm{AC}$. Draw the small-signal equivalent circuit WITH capacitors shown.

Example 4

Use: $\quad \mathrm{gm}=2.2 \mathrm{~mA} / \mathrm{V}, \lambda=0$, and $\mathrm{Cgs}=\mathrm{Cgd}=5 \mathrm{pF}$.
What is the operating range for the amplifier below(in Hz)?

Example 5

$\mathrm{V}_{\mathrm{t}}=2 \mathrm{~V}, \lambda=0, \mathrm{k}_{\mathrm{n}}{ }^{\prime}(\mathrm{W} / \mathrm{L})=2 \mathrm{~mA} / \mathrm{V}^{2}$. Does this circuit operate as a linear AC amplifier? If so, what is the gain, $\frac{V o}{V s i g}$, of the following circuit? If not, explain why.

Vsig $=2.5+\sin (\omega \mathrm{t}) .($ assume that ω is in the operating range of the circuit). If not, explain why.

No, does not amplify.

