Examples \#2:
 phase $\rightarrow-180^{\circ}$ start slope \rightarrow $+2(-20 \mathrm{~dB} / \mathrm{dec})$ $=-40 \mathrm{~dB}$ dec at $w=1$

$$
\begin{aligned}
& w=10:-z e r o:+20 d B / \operatorname{dec}:+45^{\circ}(w \mid \rightarrow 10,10 \rightarrow 100) \\
& w=100:-z e w:+20 \mathrm{~dB} / \mathrm{dec}: \quad " \quad(w=10 \rightarrow 100,100 \rightarrow 1 k) \\
& w=10 k:- \text { pole }:-20 d B / \operatorname{dec}:-45^{\circ}(w=1 k \rightarrow 10 k, 10 k \rightarrow 100 k)
\end{aligned}
$$

$$
\begin{aligned}
& a x^{2}+b x+c=0 \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
\end{aligned}
$$

ECE2280 Fundamentals of Electrical Engineering Example \#3:

$$
\begin{gathered}
\frac{5 \times 10^{4} s}{5\left(\frac{5}{5}+1\right)(500)\left(\frac{s}{500}+1\right)}=\frac{20 s}{\left(\frac{s}{5}+1\right)\left(\frac{s}{500}+1\right)} \\
20 \log (20)=26 \mathrm{~dB} @ w=1 \\
\text { phase } \Rightarrow 90^{\circ}
\end{gathered}
$$

$$
\text { Transfer Function }=\frac{5 \times 10^{4} s}{s^{2}+505 s+2500}
$$

$$
\delta=\frac{-505 \pm \sqrt{505^{2}-4(2500)}}{2}
$$

$$
=-5,-500
$$

$$
(s+5)(s+500)
$$

$w=5$: -pole : $-20 \mathrm{dBidec}:-45^{\circ}$
start
$\omega=500$: -pole: $-20 \mathrm{~dB} / \mathrm{dec}:-45^{\circ}$
Slope start $\Rightarrow+20 \mathrm{~dB} / \mathrm{dec}$

$$
(w=50 \rightarrow 500,500 \rightarrow 5 k)
$$

$$
\begin{aligned}
& \omega=10: \\
& \sqrt{\left(\frac{20}{5}\right)^{2}+1^{2}} \sqrt[(10)]{\left(\frac{10}{500}\right)^{2}+1^{2}}
\end{aligned} 39 d B
$$

$\omega=5:$

$$
\begin{aligned}
& \omega=5: \\
& \frac{20(5)}{\sqrt{\left(\frac{5}{5}\right)^{2}+1} \sqrt{\left(\frac{5}{500}\right)^{2}+1^{2}}} \cong 37 d B
\end{aligned}
$$

Problem Session \#1 Problems

1. Calculate Bode Plots of the following:
(a) $\mathrm{H}(\mathrm{s})=\frac{(s+100)}{\left(s+10^{\wedge} 3\right)\left(s+10^{\wedge} 4\right)}$

- Start value: $H(0)=100 /\left(10^{\wedge} 3^{*} 10^{\wedge} 4\right)=10^{\wedge}-5=>20 \log _{10}\left(10^{\wedge}-5\right)=-100 \mathrm{~dB}$
- Critical frequencies:
- $\omega=100$ - (negative zero) $=>+20 \mathrm{~dB} / \mathrm{dec} /+45^{\circ}$ slope/dec (over 2 decades $10<\omega<1,000$)
- $\omega=1,000-$ (negative pole) $=>-20 \mathrm{~dB} / \mathrm{dec} /-45^{\circ}$ slope/dec (over 2 decades $100<\omega<10,000$)
- $\omega=10,000-$ (negative pole) $=>-20 \mathrm{~dB} / \mathrm{dec} /-45^{\circ}$ slope/dec (over 2 decades $1,000<\omega<100,000$)

2. Calculate the Bode plot for the following:

$$
\mathrm{H}(\mathrm{~s})=\frac{10}{s^{2}(s+100)}
$$

(a) $\mathrm{n}=-2$ (the number of poles or zeros at the origin -2 poles at the origin)

- gain: $\mathrm{K}=\left.\mathrm{H}(\mathrm{s}) * \mathrm{~s}^{2}\right|_{\mathrm{s}=0}=10 / 100=.1 \Rightarrow 20 \log _{10}\left(.1 * 1^{-2}\right)=-20 \mathrm{~dB}$
- choose $\omega_{\text {start }}=0.1$ and you get $20 \log _{10}\left(.1^{*} .1^{-2}\right)=20 \mathrm{~dB}$
- phase: $\mathrm{K}>0, \mathrm{n}^{*} 90^{\circ}=-2 * 90^{\circ}=-180^{\circ}$
(b) critical frequencies:
- $\omega=0-$ (pole at origin) $=>-40 \mathrm{~dB} / \mathrm{dec} /-180^{\circ}$ start
- $\omega=1,00-$ (negative pole) $=>-20 \mathrm{~dB} / \mathrm{dec} /-45^{\circ}$ slope $/$ dec (over 2 decades $10<\omega<1,000$)

4. Use Matlab for each function listed below to obtain the Bode Plot. Sketch the Bode plots using a straightline approximation (procedures described in class) and compare the two:
a.

$$
H(s)=\frac{s+2}{(s+10)(s+100)}
$$

$$
H(s)=\frac{10 s}{(s+1)(s+10)}
$$

$$
\text { c. } H(s)=\frac{10(s+1)}{s^{2}\left(s^{2}-2 s+100\right)}
$$

(4) a. Step 1: $H(0)=\frac{2}{(10)(100)}=2 m e 20 \log _{10}(2 n e)=-53.98$

(a) $\omega=10$ (negative pole): $-20 \mathrm{~dB} / \mathrm{dec}$., -45° slop
(a) $\omega=100$ (negative pole): $-20 \mathrm{~dB} / \mathrm{dec}$., -45° slop

(4) b. Step 1: (starting value) remove the zero from the transte function and find the $D C$ gain: $K=\left.H(s) \cdot \frac{1}{s}\right|_{s=0}=\frac{10}{1(10)}=1 \Rightarrow O d B$ The start value will be $20 \log _{10}\left(|K| \cdot \omega_{s t a r t}^{n}\right)$ where n is (t) for a zero, negative for a pole. $n=\#$ of poles or zeros at $s=0$. If $\omega_{\text {stat }}=.01 \Rightarrow 20 \log _{10}(111.01)=-40 d B$. The line will be $n \times 20 \mathrm{~dB} / \mathrm{dd}$

- Draw a horizontal line at of $n .90^{\circ}$ if $k>0$ or $180^{\circ}+n \cdot 90^{\circ}$ if $k<0$ $K=1 \therefore$ phase $\rightarrow 90^{\circ}$ ($n=1$ for our case)

critical frequency's (a) $\omega=1$ (negative pole): $-20 \mathrm{~dB} / \mathrm{dec} .,-45^{\circ} / \mathrm{dec}$. $\omega=10$ (negative pole): $-200 / \mathrm{B} / \mathrm{dec},-45 \% \mathrm{dec}$

