1. Given $\mathrm{V}_{\mathrm{g}}=10 \mathrm{mV}$, find V_{o}. Find the Thevenin equivalent between terminals $\mathrm{a}-\mathrm{b}$. (Note: $\mathrm{v}_{1} \neq \mathrm{Vg}$)

2. Sketch the following waveforms. Identify the dc component of the waveform and the ac component of the waveform.
a. $\quad \mathrm{Vs}=3 \sin (20 \mathrm{t}) \mathrm{V}$
b. $\mathrm{Vs}=8 \mathrm{~V}+2 \sin \left(15 \mathrm{t}-90^{\circ}\right) \mathrm{V}$
c. $\mathrm{Vs}=6 \mathrm{~V} \pm 0.5 \mathrm{~V}$
3. Explain in your own words the procedural steps for plotting Bode Plots.
4. Sketch the Bode plots using a straight-line approximation (procedures described in class) and then use Matlab for each function listed below to obtain the Bode Plot. Compare the two:
a.

$$
H(s)=\frac{10,000 s}{(s+10000)(s+10)} \quad H(s)=\frac{100(s+1)^{2}}{(s+100)(s+1000)}
$$

$$
H(s)=\frac{10000}{s(s+100,000)}
$$

5.

(a) Analyze the following circuit to find the transfer function $\mathrm{Vo} / \mathrm{Vi}$.
(i) Solve the circuit symbolically first (with $\mathrm{R}_{1}, \mathrm{R}_{2}, \mathrm{R}_{3}, \mathrm{C}$).
(ii) Find Vo/Vi with values.
(b) Sketch the transfer function using a straight-line approximation procedure.
6. Use PSPICE to simulate the circuit of \#5 and determine the Bode Plots.

Print out the schematic, along with the plots. Compare to (b)

7. Analyze the following circuit to find the transfer function $\mathrm{Vi} / \mathrm{Vs}$. Solve the circuit symbolically first (with $\mathrm{R}_{\mathrm{S}}, \mathrm{R}_{\mathrm{i}}, \mathrm{R}_{\mathrm{l}}, \mathrm{C}_{\mathrm{i}}$) and then plug in their values. Sketch the transfer function using a straight-line approximation procedure.

