1. Given $\mathrm{V}_{\mathrm{g}}=10 \mathrm{mV}$, find V_{o}. Find the Thevenin equivalent between terminals $\mathrm{a}-\mathrm{b}$. (Note: $\mathrm{v}_{1} \neq \mathrm{Vg}$)

2. Sketch the following waveforms. Identify the dc component of the waveform and the ac component of the waveform.
a. $\quad \mathrm{V}=10 \cos (10 \mathrm{t}) \mathrm{V}$
b. $\mathrm{V}=3 \mathrm{~V}+7 \cos (10 \mathrm{t}) \mathrm{V}$
c. $\mathrm{Vs}=3 \mathrm{~V} \pm 0.25 \mathrm{~V}$
3. Explain in your own words the procedural steps for plotting Bode Plots. (Note: I would prepare this question for use during an exam)
4. (a) Plug in values of ω from 0.1 to $10^{5} \mathrm{rad} / \mathrm{sec}$. Plot this graph of Volts vs ω.
(b) Sketch the Bode plots using a straight-line approximation (procedures described in class)
(c) Use Matlab to obtain the Bode Plot.
(d) Compare the three. What differences do you see?

$$
H(s)=\frac{10 s}{(s+10,000)(s+100)}
$$

5. Sketch the Bode plot using a straight-line approximation (procedures described in class) and then use Matlab to obtain the Bode Plot. Compare the two.
$H(s)=\frac{100,000(s+10)^{3}}{s^{2}(s+10 k)(s+1 k)}$
6. Use PSPICE to simulate the circuit of Fig. 1 and determine the Bode Plots. Print out the schematic, along with the plots. (Double points - counts as two homework problems)

Fig. 1
7. Analyze the following circuit to find the transfer function Vi/Vs. Solve the circuit symbolically first (with $\mathrm{R}_{\mathrm{S}}, \mathrm{R}_{\mathrm{i}}, \mathrm{R}_{1}, \mathrm{C}_{\mathrm{i}}$) and then plug in their values. Create a rough sketch of the transfer function using a straight-line approximation procedure.

