Homework #1

ECE2280 Homework #1:

1. Given $V_g=10mV$, find V_o . Find the Thevenin equivalent between terminals a-b. (Note: $v_1 \neq Vg$)

2. Sketch the following waveforms. Identify the dc component of the waveform and the ac component of the waveform.

- a. Vs=10cos(10t) V
- b. Vs=3V+7cos(10t) V
- c. Vs=3V \pm 0.25V

3. Explain in your own words the procedural steps for plotting Bode Plots. (Note: I would prepare this question for use during an exam)

- 4. (a) Plug in values of ω from 0.1 to 10⁵ rad/sec. Plot this graph of Volts vs ω .
 - (b) Sketch the Bode plots using a straight-line approximation (procedures described in class)
 - (c) Use Matlab to obtain the Bode Plot.
 - (d) Compare the three. What differences do you see?

$$H(s) = \frac{10s}{(s+10,000)(s+100)}$$

5. Sketch the Bode plot using a straight-line approximation (procedures described in class) and then use Matlab to obtain the Bode Plot. Compare the two.

$$H(s) = \frac{100,000(s+10)^3}{s^2(s+10k)(s+1k)}$$

6. Use PSPICE to simulate the circuit of Fig. 1 and determine the Bode Plots. Print out the schematic, along with the plots. (*Double points – counts as two homework problems*)

Fig. 1

7. Analyze the following circuit to find the transfer function Vi/Vs. Solve the circuit symbolically first (with R_s , R_i , R_1 , C_i) and then plug in their values. Create a rough sketch of the transfer function using a straight-line approximation procedure.

