ECE2280

Homework #2

- 1. (a) Explain how an amplifier works in your own words.
 - (b) Explain in your own words what R_i is.
 - (c) Explain in your own words what R_o is.
 - (d) Describe the ideal characteristics for an amplifier (i.e. ideal value for R_i , R_o , A_{vo})
 - (e) Describe the characteristics for a <u>buffer amplifier</u>.
 - (f) Describe Gain-Bandwidth Product in your own words.
- 2. Use the circuit below:

Amp1 is a CA3140 and Amp2 is an LM741. (See attached datasheet information)

- (a) State each amplifiers frequency response transfer function $(V_1/V_{in} \text{ and } V_0/V_1)$
- (b) State the overall transfer function (V_0/V_{in})
- 3. Solve for the overall f_{3dB} of the circuit in #2. (You can use Matlab if you like)
- 4. Vs is an AC signal. Both amplifiers have the following characteristics:

 $R_i=100k\Omega$, $R_o=5k\Omega$, Clipping levels: L=-12V (unloaded)

- (a) State the value of Avo (or gain) for Amp1(the gain V_2/V_1) and Amp2(the gain V_3/V_2).
- (b) Redraw this 2 stage amplifier using the voltage amplifier model. Make sure to label V_s , V_1 , V_2 , V_3 , and V_0 on the schematic.

5. (a) Find the overall gain of the circuit in #4, A_v=Vo/Vs. Express your answer as a ratio(V/V) and in dB. [Round answer to the nearest whole number]
(b) Find A_i=I_L/I_s. Express your answer as a ratio(A/A) and in dB. [Round the answer to the nearest whole

(b) Find $A_i = I_L/I_s$. Express your answer as a ratio(A/A) and in dB. [Round the answer to the nearest whole number] Hint: Write an equation based on Vo and Vs that have I_L and I_s in them and relate the two.

6. Analyze the circuit below to obtain the transfer function, V_o/V_{in} . Assume an ideal op amp.

7. Sketch the straight line approximation for the Bode Plots for the equation from #6.

8. Redraw or add to the schematic below to show how to reduce the **<u>input bias current</u>**. State the symbolic value(s) of any components added to the schematic.

9. Find I and Vo assuming ideal diodes.

Electrical Specifications $V_{SUPPLY} = \pm 15V$, $T_A = 25^{\circ}C$

				TYPICAL VALUES		
PARAMETER	SYMBOL	TEST CON	DITIONS	CA3140	CA3140A	UNITS
Input Offset Voltage Adjustment Resistor		Typical Value of Between Termina 4 and 1 to Adjust	4.7	18	kΩ	
Input Resistance	RI		1.5	1.5	TΩ	
Input Capacitance	CI			4	4	pF
Output Resistance	Ro			60	60	Ω
Equivalent Wideband Input Noise Voltage, (See Figure 27)	۹N	BW = 140kHz, R	48	48	μV	
Equivalent Input Noise Voltage (See Figure 35)	еN	R _S = 100Ω	f = 1kHz	40	40	nV/√Hz
			f = 10kHz	12	12	nV/√Hz
Short Circuit Current to Opposite Supply	IOM+		Source	40	40	mA
	IOM-	I	Sink	18	18	mΑ
Gain-Bandwidth Product, (See Figures 6, 30)	f _T			4.5	4.5	MHz
Slew Rate, (See Figure 31)	SR			9	9	V/µs
Sink Current From Terminal 8 To Terminal 4 to Swing Output Low				220	220	μA
Transient Response (See Figure 28)	tr	RL = 2kΩ CL = 100pF	Rise Time	80.0	0.08	μs
	OS		Overshoot	10	10	%
Settling Time at 10Vp ₋ p, (See Figure 5)	ts	R _L = 2kΩ C _L = 100pF Voltage Follower	To 1mV	4.5	4.5	μs
			To 10mV	1.4	1.4	μs

Electrical Specifications For Equipment Design, at V_{SUPPLY} = ±15V, T_A = 25^oC, Unless Otherwise Specified

		CA3140			CA3140A			
PARAMETER	SYMBOL	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Input Offset Voltage	l⊻iol	-	5	15	-	2	5	mV
Input Offset Current	lliol	-	0.5	30	-	0.5	20	pА
Input Current	ų	-	10	50	-	10	40	pА
Large Signal Voltage Gain (Note 3) (See Figures 6, 29)	Aol	20	100	-	20	100	-	kV/V
		86	100	-	86	100	-	dB
Common Mode Rejection Ratio (See Figure 34)	CMRR	-	32	320	-	32	320	μV/V
		70	90	-	70	90	-	dB
Common Mode Input Voltage Range (See Figure 8)	VICR	-15	-15.5 to +12.5	11	-15	-15.5 to +12.5	12	V

LM741:

