1. (a) Explain how an amplifier works in your own words.
(b) Explain in your own words what R_{i} is.
(c) Explain in your own words what R_{o} is.
(d) Describe the ideal characteristics for an amplifier (i.e. ideal value for $R_{i}, R_{0}, A_{v o}$)
(e) Describe the characteristics for a buffer amplifier.
(f) Describe Gain-Bandwidth Product in your own words.
2. Use the circuit below:

Amp1 is a CA3140 and Amp2 is an LM741. (See attached datasheet information)
(a) State each amplifiers frequency response transfer function $\left(\mathrm{V}_{1} / \mathrm{V}_{\text {in }}\right.$ and $\left.\mathrm{V}_{\mathrm{o}} / \mathrm{V}_{1}\right)$
(b) State the overall transfer function $\left(\mathrm{V}_{0} / \mathrm{V}_{\text {in }}\right)$
3. Solve for the overall $\mathrm{f}_{3 \mathrm{~dB}}$ of the circuit in \#2. (You can use Matlab if you like)
4. Vs is an AC signal. Both amplifiers have the following characteristics:

$$
\mathrm{R}_{\mathrm{i}}=100 \mathrm{k} \Omega, \quad \mathrm{R}_{\mathrm{o}}=5 \mathrm{k} \Omega, \quad \text { Clipping levels: } \mathrm{L}= \pm 12 \mathrm{~V} \text { (unloaded) }
$$

(a) State the value of Avo (or gain) for Amp1 (the gain V_{2} / V_{1}) and Amp2(the gain V_{3} / V_{2}).
(b) Redraw this 2 stage amplifier using the voltage amplifier model. Make sure to label $\mathrm{V}_{\mathrm{S}}, \mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{3}$, and V_{0} on the schematic.
5. (a) Find the overall gain of the circuit in $\# 4, \mathrm{~A}_{\mathrm{v}}=\mathrm{Vo} / \mathrm{Vs}$. Express your answer as a ratio(V/V) and in dB . [Round answer to the nearest whole number]
(b) Find $\mathrm{A}_{\mathrm{i}}=\mathrm{I}_{\mathrm{L}} / \mathrm{I}_{\text {s }}$. Express your answer as a ratio(A/A) and in dB . [Round the answer to the nearest whole number] Hint: Write an equation based on Vo and Vs that have I_{L} and I_{S} in them and relate the two.
6. Analyze the circuit below to obtain the transfer function, $\mathrm{V}_{\mathrm{o}} / \mathrm{V}_{\mathrm{in}}$. Assume an ideal op amp.

7. Sketch the straight line approximation for the Bode Plots for the equation from \#6.
8. Redraw or add to the schematic below to show how to reduce the input bias current. State the symbolic value(s) of any components added to the schematic.

9. Find I and Vo assuming ideal diodes.

Electrical Specifications $\quad V_{\text {SUPPLY }}= \pm 15 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$

Electrical Specifications For Equipment Design, at $\mathrm{V}_{\text {SUPPLY }}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Unless Otherwise Specified

PARAMETER	SYMBOL	CA3140			CA3140A			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Input Offset Voltage	$\left\|\mathrm{V}_{10}\right\|$	-	5	15	-	2	5	mV
Input Offset Current	1 lol	-	0.5	30	-	0.5	20	pA
Input Current	1	-	10	50	-	10	40	pA
Large Signal Voltage Gain (Note 3) (See Figures 6, 29)	A_{OL}	20	100	-	20	100	-	kV/V
		86	100	-	86	100	-	dB
Common Mode Rejection Ratio (See Figure 34)	CMRR	-	32	320	-	32	320	$\mu \mathrm{V} / \mathrm{V}$
		70	90	-	70	90	-	dB
Common Mode Input Voltage Range (See Figure 8)	$V_{\text {ICR }}$	-15	-15.5 to +12.5	11	-15	-15.5 to +12.5	12	V

LM741:

