1. V_{s} is an AC signal. Both amplifiers have the following characteristics:

$$
\mathrm{A}_{\mathrm{vo}}=20, \quad \mathrm{R}_{\mathrm{in}}=10 \mathrm{k} \Omega, \quad \mathrm{R}_{\mathrm{o}}=2 \mathrm{k} \Omega, \quad \text { Clipping levels: } \mathrm{L}= \pm 12 \mathrm{~V} \text { (unloaded) } \mathrm{f}_{\mathrm{T}}=3 \mathrm{MHz}
$$

(a) Draw this 2 stage amplifier using the following model. Make sure to label $\mathrm{V}_{\mathrm{S}}, \mathrm{V}_{1}, \mathrm{~V}_{3}$, and V_{0} on the schematic. $\mathrm{Cin}=3 \mathrm{pF}$. Find V_{L} / V_{s} frequency response transfer function. Sketch the Bode plots using a straight line approximation and using MATLAB.

(b) What is the overall gain for this circuit.
(c) What is the exact frequency for the $\mathfrak{f}_{3 \mathrm{~dB}}$ point. (solve with the equation)
(d) For the input V_{S} as shown, sketch (make the peaks exact and estimate between the peaks) the output at V_{L} on the graph below.

(e) Find $\mathrm{A}_{\mathrm{i}}=i_{L} / i_{S}$. Express your answer as a ratio(A/A) and in dB . [Round the answer to the nearest whole number]
2. Assume the diode is ideal. Let $\mathrm{Rs}=4 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$. Sketch and clearly label the output voltage v_{o}. Vs is shown in the graph below.

3. Use the constant voltage drop diode model with $\mathrm{V}_{\mathrm{D} 0}=0.7$ to solve the circuits below for all currents in all branches of the circuit and Vo. Verify your answers.
(a) $\overbrace{-10 \mathrm{v}}^{\underbrace{+}_{2}} 5 \mathrm{D}$
(b)

4. Assume all diodes are identical and have $\mathrm{V}_{\mathrm{DO}}=0.7 \mathrm{~V}, \mathrm{n}=1$, and $\mathrm{V}_{\mathrm{T}}=25 \mathrm{mV}$. Use the constant voltage drop method. Verify that your assumption for the diode operations(i.e. on or off) are correct. Find the following making sure you find the correct operation of the diodes.
a) The current $\mathrm{I}_{\mathrm{D} 1}$
b) The current $\mathrm{I}_{\mathrm{D} 2}$
c) The voltage Vo
d) If there is noise on the +9 V supply of $\pm 1 \mathrm{~V}$, what is the valuefor i_{d} (the AC current through diode, D1). \{Hint: remember to use the AC model for the diode)
5. Use PSPICE to simulate the circuit in 4 for DC values.

Compare to your answers in 4.
6. For the circuit in (a), assume $\mathrm{V}_{\mathrm{DO}}=0.7 \mathrm{~V}, \mathrm{n}=2$, and $\mathrm{V}_{\mathrm{T}}=25 \mathrm{mV}$.

For the circuit in (b), assume $\mathrm{V}_{\mathrm{DO}}=0.6 \mathrm{~V}, \mathrm{n}=1$, and $\mathrm{V}_{\mathrm{T}}=25 \mathrm{mV}$.
Assume identical diodes and use the constant voltage drop method when appropriate. For each circuit below,
a) Determine the $\mathbf{D C}$ component of the diode currents through all diodes, I_{D}.
b) Determine the $\mathbf{D C}$ component at the output, V_{o}.
c) Determine the $\mathbf{A C}$ component of the diode currents through all diodes, i_{d}.
d) Determine the AC component at the output, V_{o}.
e) What is the total output for V_{o} (Dc and AC).

(a) Vs $=0.7+2 \sin (\omega t)$
(b)

