1. V_s is an AC signal. Both amplifiers have the following characteristics:

$$A_{vo}=20$$
, $R_{in}=10k\Omega$,

$$R_o=2k\Omega$$
, Clipping levels: $L=-12V$ (unloaded) $f_T=3MHz$

(a) Draw this 2 stage amplifier using the following model. Make sure to label V_S , V_1 , V_3 , and V_0 on the schematic. Cin=3pF. Find V_L/V_s frequency response transfer function. Sketch the Bode plots using a straight line approximation and using MATLAB.

- (b) What is the overall gain for this circuit.
- (c) What is the exact frequency for the f_{3dB} point. (solve with the equation)
- (d) For the input V_S as shown, sketch (make the peaks exact and estimate between the peaks) the output at V_L on the graph below.

(e) Find $A_i = \frac{i_L}{i_S}$. Express your answer as a ratio(A/A) and in dB. [Round the answer to the nearest whole number]

2. Assume the diode is ideal. Let $Rs = 4k\Omega$, $R_L=1k\Omega$. Sketch and clearly label the output voltage v_o . Vs is

shown in the graph below.

3. Use the constant voltage drop diode model with V_{D0} =0.7 to solve the circuits below for all currents in all branches of the circuit and Vo. Verify your answers.

4. Assume all diodes are identical and have V_{DO} =0.7V, n=1, and V_{T} =25mV. Use the constant voltage drop method. Verify that your assumption for the diode operations(i.e. on or off) are correct. Find the following making sure you find the <u>correct</u> operation of the diodes.

- a) The current I_{D1}
- b) The current I_{D2}
- c) The voltage Vo
- d) If there is noise on the +9V supply of \pm 1V, what is the value for i_d (the AC current through diode, D1). {Hint: remember to use the AC model for the diode}

- 5. Use PSPICE to simulate the circuit in 4 for DC values. Compare to your answers in 4.
- 6. For the circuit in (a), assume $V_{DO}=0.7V$, n=2, and $V_{T}=25mV$.

For the circuit in (b), assume $V_{DO}=0.6V$, n=1, and $V_T=25mV$.

Assume identical diodes and use the constant voltage drop method when appropriate. For each circuit below,

- a) Determine the **DC** component of the diode currents through all diodes, I_D.
- b) Determine the **DC** component at the output, V_o .
- c) Determine the AC component of the diode currents through all diodes, id.
- d) Determine the **AC** component at the output, V_o.
- e) What is the **total** output for V_0 (Dc and AC).

