1. V_{s} is an AC signal. Both amplifiers have the following characteristics:

$$
\mathrm{A}_{\mathrm{vo}}=10 ; \quad \mathrm{R}_{\mathrm{i}}=100 \mathrm{k} \Omega ; \quad \mathrm{R}_{\mathrm{o}}=10 \mathrm{k} \Omega, \quad \text { Clipping levels: } \mathrm{L}= \pm 12 \mathrm{~V} \text { (unloaded) }
$$

2. Sketch the Bode plots using a straight line approximation of the transfer function found in \#1 circuit.
3. (a) What is the overall gain for the circuit in $\# 1$ in V / V and in dB .
(b) Find $\mathrm{A}_{\mathrm{i}}=i_{L} / i_{S}$. Express your answer as a ratio(A/A) and in dB .
(c) What is the exact frequency in Hz for the $\mathrm{f}_{3 \mathrm{~dB}}$ point. (solve with the equation)
(d) For the input V_{S} as shown, sketch (make the peaks exact and estimate between the peaks) the output at V_{L} on the graph below.

4. Assume the diode is ideal. Let $\mathrm{Rs}=1 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}}=4 \mathrm{k} \Omega$. Sketch and clearly label the output voltage v_{o}. Vs is shown in the graph below.

5. Use the constant voltage drop diode model with $\mathrm{V}_{\mathrm{D} 0}=0.7$ to solve the circuits below for all currents in all branches of the circuit and Vo. Verify your answers.

6. Assume all diodes are identical in the above circuit and have $\mathrm{V}_{\mathrm{DO}}=0.6 \mathrm{~V}, \mathrm{n}=2$, and $\mathrm{V}_{\mathrm{T}}=25 \mathrm{mV}$. Use the constant voltage drop method. Verify that your assumption for the diode operations(i.e. on or off) are correct. Find the following making sure you find the correct operation of the diodes.
a) The current $\mathrm{I}_{\mathrm{D} 1}$ through D 1
b) The current $\mathrm{I}_{\mathrm{D} 2}$ through D2
c) The current $\mathrm{I}_{\mathrm{D} 3}$ through D3
7. For the circuit below, assume $\mathrm{V}_{\mathrm{DO}}=0.5 \mathrm{~V}, \mathrm{n}=3$, and $\mathrm{V}_{\mathrm{T}}=25 \mathrm{mV}$. Assume identical diodes and use the constant voltage drop method when appropriate. $\mathrm{Vs}=10+\sin (10 \mathrm{kt})$ Volts. (Note: ID $=0$ diode is still on.)
a) Determine the $\mathbf{D C}$ component of the diode currents through all diodes, I_{D}.
b) Determine the $\mathbf{D C}$ component at the output, V_{o}.
c) Determine the $\mathbf{A C}$ component of the diode currents through all diodes, i_{d}.
d) Determine the $\mathbf{A C}$ component at the output, V_{o}.
e) What is the total output for $\mathrm{V}_{\mathrm{o}}(\mathrm{Dc}$ and AC$)$.

