1. Use: $\mathbf{g}_{\mathbf{m}}=\mathbf{1 0 0} \mathbf{m A} / V$ for the circuit below. Vsig is an AC signal source.
(a) Derive the frequency response transfer function for $\mathrm{Vo} / \mathrm{Vsig}$ in terms of Csig.
(b) Find the value of Csig where the low 3 db frequency value, $f_{L}=10 \mathrm{~Hz}$ (note this is in $\mathrm{Hz}-$ not $\mathrm{rad} / \mathrm{sec}$).

2. (a) Solve the DC circuit(schematic below)to find I_{D} and V_{GS} (assume caps open)
(b) Use Matlab to find the value that Vdd can be reduced and still keep the transistor in saturation.
3. Solve the AC circuit(schematic below):
(a) Draw the small-signal equivalent circuit (assume caps shorted)
(b) Find the midband gain $\frac{\mathrm{V}_{\mathrm{o}}}{\mathrm{V}_{\mathrm{I}}}\left(\mathrm{V}_{\mathrm{I}}\right.$ is an AC source $)$
(d) Find Rin (node to right of capacitor, remove V_{I} and $1 k$)
(e) Find Rout (node to left of capacitor, remove 4k)

Given:

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{t}}=2.831 \mathrm{~V} \\
& \mathrm{k}_{\mathrm{n}}{ }^{\prime}(\mathrm{W} / \mathrm{L})=3.1 \mathrm{~A} / \mathrm{V}^{2}
\end{aligned}
$$

4. Solve the circuit(schematic below) by including the capacitors in the AC small-signal equivalent circuit. Solve the frequency transfer function $\mathrm{Vo} / \mathrm{V}_{\mathrm{I}}$.
5. Simulate the circuit using PSPICE and IRF150 for the MosFet.
(a) Find and compare the simulated AC bode plot with the theoretical function found in (4).
(b) Find and compare the DC values found in (2). If there are differences describe why.

6. V_{I} is an AC voltage source. Use $\lambda=0, \mathrm{~g}_{\mathrm{m}}=1 \mathrm{~mA} / \mathrm{V}^{2}$
$\mathrm{R}_{\mathrm{G}}=10 \Omega, \mathrm{R}_{\mathrm{G} 1}=2 \mathrm{M} \Omega, \mathrm{R}_{\mathrm{G} 2}=10 \mathrm{M} \Omega, \mathrm{Rd}=10 \mathrm{k} \Omega, \mathrm{RS}=1 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$.
(a) Find the midband gain $A_{v}=\frac{V_{o}}{V_{I}}$ (use small-signal model), $R_{\text {in }}\left(\right.$ remove $\left.R_{G}\right)$ and $R_{\text {out }}\left(\right.$ remove $\left.R_{L}\right)$

7. Use $\mathrm{V}_{\mathrm{t}}=2 \mathrm{~V}, \mathrm{k}_{\mathrm{n}}{ }^{\prime}(\mathrm{W} / \mathrm{L})=3 \mathrm{~mA} / \mathrm{V}^{2}, \lambda=0$, Vs is an AC voltage source. $\mathrm{g}_{\mathrm{m}}=10 \mathrm{~mA} / \mathrm{V}^{2}$
(a) Find the midband gain $\mathrm{A}_{\mathrm{v}}=\frac{V_{o}}{V_{s}}$ (use small-signal model), $\mathrm{R}_{\mathrm{in}}\left(\right.$ remove 10) and $\mathrm{R}_{\text {out }}($ remove 10 k)

