
Homework #5 **ECE2280** Spring 2008

1. Analyze the circuit shown below to determine the voltages (V_D, V_G, V_S) at all nodes and the currents through all branches (I_1 , I_2 , I_G , I_D , I_S). Let $V_t = 2V$ and $k_n'(W/L) = 180 \mu A/V^2$. Neglect the channel length modulation effect (i.e. $\lambda=0$).

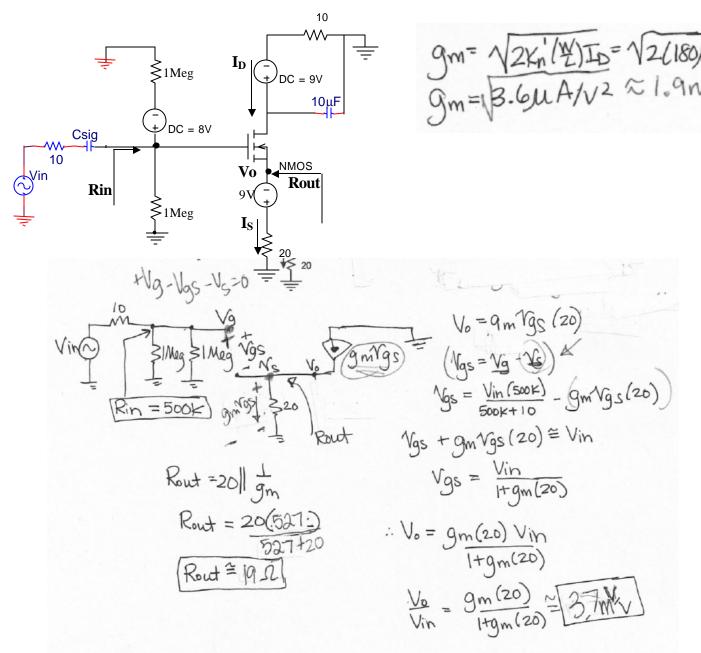
2. If an AC source is applied at node V_G state the condition that needs to be satisfied for the ac input amplitude. (what is the small-signal condition?)

$$I_S = I_D = \frac{1}{2} (180 \mu) (4 - I_S(20) + 9 - 2)^2$$
 $I_S = I_D = \frac{1}{2} (180 \mu) (4 - I_S(20) + 9 - 2)^2$
 $I_S = I_D = \frac{1}{2} (180 \mu) (4 - I_S(20) + 9 - 2)^2$
 $I_S = I_D = \frac{1}{2} (180 \mu) (4 - I_S(20) + 9 - 2)^2$

$$O = 400 \text{ Ts}^2 - 11,551 \text{ Ts} + 121$$

$$T = 11,551 \pm \sqrt{(11551)^2 - 4(12)(400)}$$
089 [0.0105 A]

$$T_{s} = \frac{11,551 \pm \sqrt{(11.551)^{2} - 4(121)(400)}}{2(400)}$$


$$V_{s} = \frac{569}{569}$$

$$V_{s} = \frac{569}{569}$$

$$+I_{0}(10)-9+V_{0}=0$$

 $V_{0}=I_{0}(10)+9=(-0.005)(10)+9=8.9V$
 $V_{0}=V_{0}\geq V_{0}\leq V_{0}=2V$

Let $V_t=2V$, $k_n'(W/L)=180\mu A/V^2$, $I_D=I_S=10mA$, and $\lambda=0$.

- 2. Draw the small-signal equivalent circuit by assuming all capacitors become shorts.
- 3. Analyze the circuit to find $A_v = V_o/V_{in}$, R_{in} (remove 10 Ω) and R_{out}
- 4. Explain how to make the input resistance, R_{in} more ideal. State exact resistors that could be changed and how they could be changed. If this resistors were changed, how does this effect the gain?
- 5. How could the overall gain be increased. By making that change, what is the tradeoff or what do you have to be careful about?
- 6. Derive the frequency response transfer function for Vo/Vin in terms of Csig.
- 7. Find the value of Csig where the low 3db frequency value, $f_L = 10$ Hz (note this is in Hz not rad/sec).

- 4. Rin can be increased to become more ideal => Change into Mega Ohms. No effect on gain.
- 5. Increase gm which means to increase ID. This will put the circuit at risk of moving out of the saturation region. Increasing the 20ohm will increase gain.