ECE2280

- 1. Use: ignore r_{o} , $|V_{BE}|=0.7$, $\beta=100$
- (a) Assume active mode and solve for the DC values:
 - a. $I_{B1}, I_{B2}, I_{E1}, I_{E2}, I_{C1}, I_{C2}$
 - b. $V_{B1}, V_{B2}, V_{E1}, V_{E2}, V_{C1}, V_{C2}$
- (b) Prove or disprove operation in the active region for both transistors.
- (c) What will be the maximum input for V_I if $V_{C2}/V_I = -5V/V$? (Assume the circuit is operating in the correct frequency range.)
- 2. Use: ignore r_{o} , $|V_{BE}|=0.7$, $\beta=100$
- (a) Assume active mode and solve for the DC values:
 - a. $I_{B1}, I_{B2}, I_{E1}, I_{E2}, I_{C1}, I_{C2}$
 - b. $V_{B1}, V_{B2}, V_{E1}, V_{E2}, V_{C1}, V_{C2}$
- (b) Prove or disprove operation in the active region for both transistors.
- (c) What will be the maximum input for V_I if $V_{C2}/V_I = -5V/V$? (Assume the circuit is operating in the correct frequency range and that the amplification does not pull the transistors out of active region).
- 3. Use: ignore $r_{o,} |V_{BE}|=0.7, \beta=100, V_T=25mV$ $V_{sig} = 10+0.002sin(20t)$ $r_{\pi 1}=4,000$ and $g_{m 2}=10mA/V$

For the following hybrid- π equivalent circuit below, find the following values:

- (a) R_{in} (input resistance –ignore only the input source, Vsig and include all resistors at the base)
- (b) R_{out} (output resistance-include **all** resistors {no load is connected})

4. Use: ignore r_{o} , $|V_{BE}|=0.7$, $\beta=100$, $V_{T}=25mV$ $V_{sig} = 10+0.002sin(20t)$ $r_{\pi 1}=4,000$ and $g_{m 2}=10mA/V$

For the following hybrid- π equivalent circuit below, find the following values:

- (a) R_{in} (input resistance –ignore only the input source, Vsig and include all resistors)
- (b) R_{out} (output resistance-ignore R_L)

(c) midband gain, $\frac{Vo}{Vsig}$

5. For the circuit shown below, **draw** the AC small-signal equivalent circuit(use hybrid- π or model T). Make sure that everything is labeled in terms of the transistor number. (e.g. g_{m1} , $v_{\pi 2}$, etc.). **Include r**_o for all transistors. v_{sig} =0.001sin(10t) AC. Assume that the capacitors act as a short.

6. For the circuit shown below, **draw** the AC small-signal equivalent circuit(use hybrid- π or model T). Make sure that everything is labeled in terms of the transistor number. (e.g. g_{m1} , $v_{\pi 2}$, etc.). **Include r**_o for all transistors. v_{sig} =0.001sin(10t) AC. Assume that the capacitors act as a short.

7. $|V_{BE}|=0.7$, $\beta=100$, $V_T=25mV$, $|V_{CE_{SAT}}|=0.2V$, ignore r_0 , $v_{sig} = \{2+0.1\sin(\omega t)\}$ Volts. Assume that the

capacitor acts as an open for DC operation and short for AC operation.

(a) Assume transistor is acting in saturation, solve for I_B , I_C , and β_{forced} .

(b) Express the condition for R_B , without changing any other supply voltage or resistors, that will move the transistor to the **active region**.

8. $|V_{BE}|=0.7$, $\beta=100$, $V_T=25mV$, $|V_{CE_{SAT}}|=0.2V$.

(a) Assume transistor is acting in saturation, solve for I_B , I_C , and β_{forced} .

(b) How can R_B be changed so that the transistor moves into the active region? Express the condition for R_B , without changing any other supply voltage or resistors, that will keep the transistor in the **active region**.

9. Use: ignore $r_{o, |V_{BE}|=0.7, \beta=100, V_{T}=25mV$ $V_{sig} = 10+0.002sin(20t)$

 $r_{\pi 1}$ =4,000 g_{m2}=100mA/V, and I_{B2}=25µA

For the following hybrid- π equivalent circuit below, find the following values:

- (a) R_{in} (input resistance –ignore only the input source, Vsig and include all resistors at the base)
- (b) R_{out} (output resistance-include **all** resistors {no load is connected})

10. ignore
$$r_{o,} |V_{BE}|=0.7$$
, $\beta=100$, $V_T=25mV$
 $V_{sig} = 10+0.002sin(20t)$
 $r_{\pi 1}=4,000 g_{m 2}=100mA/V$, and $I_{B 2}=25\mu A$

For the following hybrid- π equivalent circuit below, find the following values:

- (a) R_{in} (input resistance –ignore only the input source, Vsig and include all resistors at the base)
- (b) R_{out} (output resistance-include **all** resistors {no load is connected})
- (c) midband gain, $\frac{Vo}{Vsig}$
- (d) Is this a good amplifier? why or why not?

