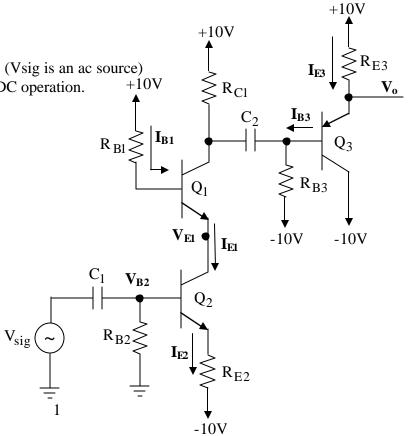

## ECE2280

## Homework #7

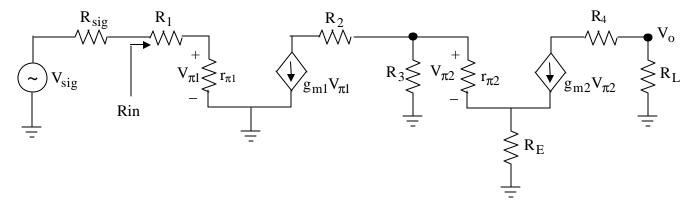



2. Use  $|V_{BE}|=0.7$ ,  $\beta=100$ . Find voltages at all nodes and the currents through all branches.

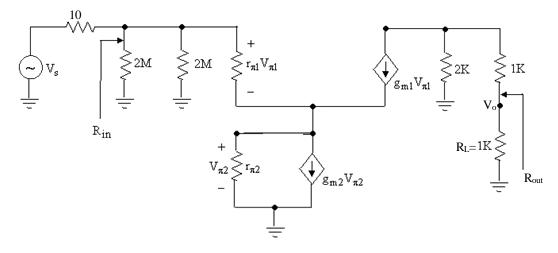


3. Assume active operation for all transistors. (Vsig is an ac source) Assume that the capacitors act as an open for DC operation. +1

- (a) Find the symbolic equations for the DC values for I<sub>E1</sub>, I<sub>E2</sub>, I<sub>B1</sub>, I<sub>E3</sub>, I<sub>B3</sub>, V<sub>o</sub>, V<sub>E1</sub>
- (b) Draw the hybrid- $\pi$  or model-T AC circuit




4. Use  $|V_{BE}|=0.7$ ,  $\beta=20$ ,  $V_T=25mV$  (Vsig is an ac source), ignore  $r_o$ .


This small-signal model circuit is shown below. It was found through a DC analysis that  $I_{C1}=1mA$  and

## $I_{C2}=2mA$ .

- (a) Find the ac parameters,  $r_{\pi 1}$  and  $gm_2$
- (b) Find a symbolic equation for the input resistance,  $R_{in}$ . (Ignore the AC input source and Rsig, <u>include</u> <u>R1</u>)
- (c) Find a symbolic expression for the overall gain,  $\frac{Vo}{Vsig}$ .



5. Use  $|V_{BE}|=0.7$ ,  $\beta=100$ ,  $V_T=25mV$  (Vs is an ac source), ignore  $r_o$ . This small-signal model comes from a circuit that has 2 transistors Q1 and Q2 denoted below as subscripts 1 and 2. It was found that  $I_{E1}=2.525m$  and  $I_{E2}=1.2625m$ . Find  $R_{in}$ (ignore Vs and  $10\Omega$ ),  $R_{out}$ (ignore  $R_L$ ), and midband gain, Vo/Vs.

