Assume all transistors are the same and have a finite β and an infinite Early voltage. Your expression should include *only* real resistances (R_1 , R_2 , R_3 , R_4 , R_5 , R_6 , R_{G1} , R_{G2} or a subset of these) and possibly β , r_e , or r_{π} .

1. Write an expression for the input resistance $\mathbf{R_{in1}}$ in the circuit shown below.

2. Write an expression for the input resistance $\mathbf{R_{in2}}$ in the circuit shown below.

Assume the transistors are identical and β =160, $|V_{BE}|$ =0.7.

3. Find V_{B1} , V_{C1} , V_{E1} , V_{B2} , V_{out} , I_{C1} , I_1 , I_{B2} , I_{E2} , and I_{C2} . Verify the transistors are acting in the active region.

4. Find the three low frequency pole locations. State the value for f_L in Hz.

5. Draw the hybrid-p small signal equivalent circuit. State the type of 2stage amplifier configuration this is. (e.g. Common Collector-Common Source, Common Base-Common Collector, etc.).

6. Analyze the circuit for Rin and Rout.

7. Analyze the circuit to determine Vout/Vsig.

8. State the resistors that could be changed to increase the overall gain and what value they could be changed (might need to use MATLAB) to achieve a better gain.

9. Explain in your own words and with drawings (show exactly where the parasitic capacitances are located on a cross-sectional view of the transistor) the capacitors that determine the high-frequency pole locations for this circuit.

