

- e. I_C (b) Solve for the DC voltages:
 - a. V_G
 - b. V_S
 - c. V_D
 - d. V_B
 - e. V_E
- (c) Verify that the MosFet transistor, M1 is saturated. Verify that the BJT transistor, Q2 is active.
- 2. Create a rough sketch of the total waveforms seen at **Vo and V_{o1}** given V_{IN} stated above, $V_B/V_{IN}=-3V/V$, and $V_0/V_B=-27V/V$. Make sure to label all relevant y-axis values (maximum, minimum, etc.). First draw Vo1 and then draw Vo. There should be 2 sketches.
- 3. Use the circuit on the next page: ignore \mathbf{r}_0 and \mathbf{l} , $|\mathbf{V}_{BE}|$ =0.7, \mathbf{b} =100, \mathbf{n} =1, \mathbf{V}_T =25mV, \mathbf{V} t(threshold voltage)=1V, \mathbf{k}_n '(W/L)=10mA/V², V_{sig} = 0.02sin(20t), I_{E3} =4mA, I_{DIODE} =2mA, $I_{D=20mA}$

For the following hybrid- π equivalent circuit below, find the following values:

- (a) Find r_d , $r_{\pi 3}$, g_{m2} , and g_{m3} values.
- (b) R_{in} (input resistance –ignore only the input source, Vsig; include **all** resistors seen above Vsig)
- (c) R_{out} (output resistance-include all resistors at node {no load is connected})
- (d) midband gain, $\frac{Vo}{Vsig}$

4. (a) Explain why or why not this is a good amplifier for voltage amplification, Vo/Vsig.

(b) Explain why or why not this is a good amplifier for current amplification., Iout/Iin.

5. For the circuit shown below:

Draw the AC small-signal equivalent circuit(use hybrid- π or model T). Make sure that everything is labeled in terms of the transistor number. (e.g. g_{m1} , $v_{\pi 2}$, etc.). **Include** $\mathbf{r_0}$ for all transistors. v_{sig} =0.001sin(10t) AC.

6. $|V_{BE}|$ =0.7, β =100, ignore r_o , V4 ={0.1sin(ω t)}Volts. Assume that the applied signal frequency is adequate to keep the circuit operating in the flat midband region. Assume that the capacitors act as an open for DC operation and a short for AC operation. The following DC values were measured: I_D =1.3m, VD=9V, VG=6V, VS=3.1V, IE=12mA, VE=2.3V, VB=3V, VC=10V.

The AC gain was measured to be Vo1/V4=83V/V, Vo2/Vo1=1V/V, r_{π} =200 Ω , g_{m_MOSFET} =5mA/V.

- Does this circuit operate as a **linear** AC amplifier with the applied shown voltage? If so, what is the gain, $\frac{Vo}{Vsig}$, of the following circuit? If not, explain why.
- 7. Assume that C2 and C6 contribute pole values less than 1rad/sec. Calculate the pole contributions of C2 and C4. What is f_L (in rad/sec)?

