1. Use: ignore $r_{0},\left|V_{B E}\right|=0.7, \beta=100$

$$
V_{t}=1 V
$$

$$
k_{n} \prime(W / L)=10 \mathrm{~mA} / V^{2}
$$

$$
\lambda=\mathbf{0}
$$

$\mathrm{V}_{\text {DO }}=\mathbf{0 . 8 V}$
$V_{I N}=5+0.001 \sin (20 t)$

For DC analysis, assume that the capacitors are open
(a) Solve for the DC currents:
a. I_{D}
b. I_{S}
c. I_{B}
d. I_{E}

(b) Solve for the DC voltages:
a. V_{G}
b. V_{S}
c. V_{D}
d. V_{B}
e. V_{E}
(c) Verify that the MosFet transistor, M1 is saturated. Verify that the BJT transistor, Q2 is active.
2. Create a rough sketch of the total waveforms seen at $\mathbf{V o}$ and $\mathbf{V}_{\mathbf{0 1}}$ given $\mathrm{V}_{\text {IN }}$ stated above, $\quad \mathrm{V}_{\mathrm{B}} / \mathrm{V}_{\text {IN }}=-$ $3 \mathrm{~V} / \mathrm{V}$, and $\mathrm{Vo} / \mathrm{V}_{\mathrm{B}}=-27 \mathrm{~V} / \mathrm{V}$. Make sure to label all relevant y -axis values (maximum, minimum, etc.). First draw Vol and then draw Vo. There should be 2 sketches.
3. Use the circuit on the next page: ignore $\mathbf{r}_{\mathbf{0}}$ and $\lambda,\left|V_{B E}\right|=\mathbf{0 . 7}, \beta=\mathbf{1 0 0}, \mathbf{n}=\mathbf{1}, \mathbf{V}_{\mathrm{T}}=\mathbf{2 5 m V} \mathbf{m t}$ (threshold voltage $)=1 \mathrm{~V}, \mathrm{k}_{\mathrm{n}}{ }^{\prime}(\mathrm{W} / \mathrm{L})=10 \mathrm{~mA} / \mathrm{V}^{2}, V_{\text {sig }}=0.02 \sin (20 \mathrm{t}), \mathrm{I}_{\mathrm{E} 3}=4 \mathrm{~mA}, \mathrm{I}_{\text {DIODE }}=2 \mathrm{~mA}, I_{D}=20 \mathrm{~mA}$

For the following hybrid- π equivalent circuit below, find the following values:
(a) Find $\mathrm{r}_{\mathrm{d}}, \mathrm{r}_{\pi 3}, \mathrm{~g}_{\mathrm{m} 2}$, and $\mathrm{g}_{\mathrm{m} 3}$ values.
(b) $\mathrm{R}_{\text {in }}$ (input resistance -ignore only the input source, Vsig; include all resistors seen above Vsig)
(c) $\mathrm{R}_{\text {out }}$ (output resistance-include all resistors at node $\{$ no load is connected\})
(d) midband gain, $\frac{V o}{V s i g}$
4. (a) Explain why or why not this is a good amplifier for voltage amplification, Vo/Vsig. (b) Explain why or why not this is a good amplifier for current amplification., Iout/Iin.

5. For the circuit shown below:

Draw the AC smallsignal equivalent circuit(use hybrid- π or model T). Make sure that everything is labeled in terms of the transistor number. (e.g. $\mathrm{g}_{\mathrm{m} 1}, v_{\pi 2}$, etc.). Include \mathbf{r}_{0} for all transistors. $v_{s i g}=0.001 \sin (10 \mathrm{t}) \mathrm{AC}$.

6. $\left|\mathrm{V}_{\mathrm{BE}}\right|=0.7, \beta=100$, ignore $\mathrm{r}_{\mathrm{o}}, \mathrm{V} 4=\{0.1 \sin (\omega \mathrm{t})\}$ Volts. Assume that the applied signal frequency is adequate to keep the circuit operating in the flat midband region. Assume that the capacitors act as an open for DC operation and a short for AC operation. The following DC values were measured: $\mathrm{I}_{\mathrm{D}}=1.3 \mathrm{~m}, \mathrm{VD}=9 \mathrm{~V}, \mathrm{VG}=6 \mathrm{~V}, \mathrm{VS}=3.1 \mathrm{~V}, \mathrm{IE}=12 \mathrm{~mA}, \mathrm{VE}=2.3 \mathrm{~V}, \mathrm{VB}=3 \mathrm{~V}, \mathrm{VC}=10 \mathrm{~V}$.

The AC gain was measured to be $\mathrm{Vo1} / \mathrm{V} 4=83 \mathrm{~V} / \mathrm{V}$, $\mathrm{Vo} 2 / \mathrm{Vo} 1=1 \mathrm{~V} / \mathrm{V}, \mathrm{r}_{\pi}=200 \Omega, \mathrm{~g}_{\mathrm{m} _ \text {MOSFET }}=5 \mathrm{~mA} / \mathrm{V}$.

- Does this circuit operate as a linear AC amplifier with the applied shown voltage? If so, what is the gain, $\frac{V o}{V s i g}$, of the following circuit? If not, explain why.

7. Assume that C 2 and C 6 contribute pole values less than $1 \mathrm{rad} / \mathrm{sec}$. Calculate the pole contributions of C 2 and C 4 . What is f_{L} (in $\mathrm{rad} / \mathrm{sec}$)?

