1. For the circuit shown below, draw the AC small-signal equivalent circuit(use hybrid- π or model T). Make sure that everything is labeled in terms of the transistor number. (e.g. $\mathrm{g}_{\mathrm{m} 1}, v_{\mathrm{g} 52}, \mathrm{r}_{\mathrm{o} 1}$, etc.). $\boldsymbol{\lambda} \neq \mathbf{0}$ for all transistors.(i.e. draw the small-signal with r_{o} included). $v_{\text {sig }}=0.005 \sin (20 \mathrm{t})$ AC. Draw the smallsignal equivalent circuit WITH capacitors shown.

2. For the circuit shown below, draw the AC small-signal equivalent circuit(use hybrid- π or model T). Make sure that everything is labeled in terms of the transistor number. (e.g. $\mathrm{g}_{\mathrm{m} 1}, v_{\mathrm{g} 2}$, etc.). $\boldsymbol{\lambda}=\mathbf{0} . \mathbf{5}$ for all transistors. Note that this will put a resistance (label it $\mathrm{r}_{\mathrm{o} 1}$ or $\mathrm{r}_{\mathrm{o} 2}$) in parallel with the dependent source of the hybrid- π or model T. Let $v_{\text {sig }}=0.005 \sin (20 t)$ AC. Assume all capacitors are SHORT for the AC circuit.

3. Use: $\mathrm{V}_{\mathrm{t}}=2 \mathrm{~V}$
$\mathrm{k}_{\mathrm{n}}{ }^{\prime}(\mathrm{W} / \mathrm{L})=3 \mathrm{~mA} / \mathrm{V}^{2}$
$V_{\text {sig }}$ is an AC source
Transistor 1 has $D C$ values: $\mathrm{V}_{\mathrm{GS}}=4 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=6 \mathrm{~mA}$
Transistor 2 has DC values: $\mathrm{V}_{\mathrm{GS}}=5.3 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=16.7 \mathrm{~mA}$
$\lambda=0$ (for all transistors)
For the following hybrid- π equivalent circuit, find the following values:
(a) $\mathrm{R}_{\text {in }}$ (input resistance -ignore the input source, Vsig)
(b) $\mathrm{R}_{\text {out }}$ (output resistance-ignore $\mathrm{R}_{\mathrm{L}}\{$ no load is connected \})
(c) midband gain, $\frac{V o}{V s i g}$

4. Let $\mathrm{V}_{\mathrm{t}}=1 \mathrm{~V}, \mathrm{k}_{\mathrm{n}}{ }^{\prime}(\mathrm{W} / \mathrm{L})=1 \mathrm{~mA} / \mathrm{V}^{2}$, $V_{\text {sig }}$ is an AC source. Transistor 1 has DC values: $\mathrm{V}_{\mathrm{GS}}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=2 \mathrm{~mA}$. Transistor 2 has DC values: $\mathrm{V}_{\mathrm{GS}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=8 \mathrm{~mA} . \lambda=0$ (for all transistors) and assume all transistors are saturated. For the following hybrid- π equivalent circuit, find the following values:
(a) $\mathrm{R}_{\text {in }}$ (input resistance-ignore the input source, Vsig)
(b) $\mathrm{R}_{\text {out }}$ (output resistance-ignore $\mathrm{R}_{\mathrm{L}}\{$ no load is connected \})
(c) ideal midband gain, $\frac{V o}{V s i g}$

5. (a) Draw the hybrid- π circuit
(b) Find the gain $\frac{V_{0}}{V_{I}}\left(V_{I}\right.$ is an AC source)
(c) Find Kin (node to right of capacitor to ground)
(d) Find Rout (node to left of capacitor to ground)

Given:

$\underline{I}_{\underline{D}}=1 \mathrm{~mA}$ and the transistor is saturated $\mathrm{V}_{\mathrm{t}}=2 \mathrm{~V}$
$\mathrm{k}_{\mathrm{n}}{ }^{\prime}(\mathrm{W} / \mathrm{L})=2 \mathrm{~mA} / \mathrm{V}^{2}$
Assume that the capacitors act as closed for the AC analysis.
6. Use: $\quad V_{t}=1 V$
$k_{n}{ }^{\prime}(W / L)=222 \mu A / V^{2}$

$$
\lambda=0
$$

$V_{\text {IN }}=3+0.002 \sin (20 t)$
For DC analysis, assume that the capacitors act as an open. The current source is not ideal and has a voltage drop across it.
(a) Solve for the DC currents:
a. I_{1}
b. I_{S}
(b) Solve for the DC voltages:

(c) Verify that transistor M2 is saturated.

a. $\mathrm{V}_{\mathrm{G} 2}$
b. $\mathrm{V}_{\mathrm{S} 2}$
c. $\mathrm{V}_{\mathrm{S} 1}$
(d) State the DC bias point for transistor M1.
(e) Assuming that the transistor amplification is $\mathrm{V}_{\mathrm{S} 2} / \mathrm{V}_{\mathrm{I}}=-4 \mathrm{~V} / \mathrm{V}$. Assume the input frequency is operating within the circuits operating range. What is the total (AC and DC) instantaneous output for $\mathrm{V}_{\mathrm{S} 2}$ using the $\mathrm{V}_{\text {IN }}$ value stated above.
7. Use: $\quad \mathrm{V}_{\mathrm{t}}=1 \mathrm{~V}, \mathrm{k}_{\mathrm{n}}{ }^{\prime}(\mathrm{W} / \mathrm{L})=1 \mathrm{~mA} / \mathrm{V}^{2}, \lambda=0, \mathrm{~V}_{\text {IN }}=(5+10 \mathrm{~m} \sin (20 \mathrm{t})) \mathrm{V}$ For DC analysis, assume that the capacitors act as an open. The current source is not ideal and has a voltage drop across it.
(a) Solve for the DC currents I_{1}, I_{S}.
(b) Solve for the DC voltages $\mathrm{V}_{\mathrm{G} 2}, \mathrm{~V}_{\mathrm{S} 2}, \mathrm{~V}_{\mathrm{S} 1}$.
(c) Verify that transistor M2 is saturated.
(d) State the DC bias point for transistor M1.

(e) Assuming that the transistor amplification is $\mathrm{V}_{\text {out }} / \mathrm{V}_{\text {IN }}=+5 \mathrm{~V} / \mathrm{V}$. Assume the input frequency is operating within the circuits operating range. Assume that the amplification does not pull the transistors out of saturation. Draw a rough sketch of the total instantaneous value seen at $\mathrm{V}_{\text {out }}$ using the $\mathrm{V}_{\text {IN }}$ value stated above.
8. $\quad \mathrm{V}_{\mathrm{t}}=1 \mathrm{~V}, \mathrm{k}_{\mathrm{n}}{ }^{\prime}(\mathrm{W} / \mathrm{L})=10 \mathrm{~mA} / \mathrm{V}^{2}, V_{\text {sig }}$ is an AC source, $\lambda=0$ and assume all transistors are saturated.

Transistor 1 has $D C$ values: $\mathrm{V}_{\mathrm{GS}}=9 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=3.2 \mathrm{~A}$
Transistor 2 has DC values: $\mathrm{V}_{\mathrm{GS}}=1.18 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=162 \mu \mathrm{~A}$
For the following hybrid- π equivalent circuit, find the following values:
a. $\mathrm{R}_{\text {in }}$ (input resistance-ignore the input source, Vsig)
b. $\mathrm{R}_{\text {out }}$ (output resistance-ignore R_{L} \})
c. Find the ideal overall midband gain, $\frac{V_{O}}{v_{s i g}}$ (make sure to include R_{L}).

9. Let $\mathrm{V}_{\mathrm{t}}=2 \mathrm{~V}, \lambda=0, \mathrm{k}_{\mathrm{n}}{ }^{\prime}(\mathrm{W} / \mathrm{L})=1 \mathrm{~mA} / \mathrm{V}^{2}, \mathrm{~V}_{\mathrm{IN}}=5+1 \mathrm{~m} \sin (\omega \mathrm{t})$. This amplifier was designed to achieve an overall gain of $-2 \mathrm{~V} / \mathrm{V}$. The magnitude Bode plot of the amplifier is shown below. An AC graph(DC is removed) of Vin and Vout is shown for an input frequency of 100 kHz . Why is the output peak not 2 mV ?

10. Let $\mathrm{V}_{\mathrm{t}}=2 \mathrm{~V}, \lambda=0, \mathrm{k}_{\mathrm{n}}{ }^{\prime}(\mathrm{W} / \mathrm{L})=2 \mathrm{~mA} / \mathrm{V}^{2}, \mathrm{~V}_{\mathrm{IN}}=5+50 \mathrm{~m} \sin (\omega \mathrm{t})$. Assume that the capacitor acts as an open for DC operation and a short for AC operation. Does this circuit operate as a linear AC amplifier? If so, what is the gain, $\frac{\text { Vout }}{V i n}$, of the following circuit? If not, explain why.

