UNIVERSITY OF UTAH DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING ECE 2280

A. Rasmussen 04/12

100 pts Project #2 Simulation:

35 pts HAND CALCULATIONS:

POINTS GIVEN	POINTS	DESCRIPTION
	POSSIBLE	
	5	Draw a Hybrid-π equivalent circuit.
	5	Calculation of DC analysis.
	15	Calculation of overall Voltage Gain (from hybrid- π model).
	5	Calculation of R _{out} .
	5	Calculation of Rin.
TOTAL =		

65 pts SIMULATION:

POINTS	MISSING	POINTS POSSIBLE	<u>DESCRIPTION</u>
<u>GIVEN</u>		POSSIBLE	
		5	Printout of circuit schematic.
		10	Currents are shown to be in active region(BJT), and saturation(MosFet) if appropriate.
		10	DC verification that transistors are in active region (BJT) or saturation (MosFet)
		10	AC Bode plot of gain stages.
		10	AC Bode plot of overall gain.
		10	Plot of output impedance vs. frequency.
		10	Comparison table between hand and simulation for currents, Voltage gain, R _{out} , and Rin.
TOTAL=			

) V	$^{\prime}\mathrm{El}$	K F	\ L	L '	1	U	Ί	Α	۱L	=					

100 pts Project #3 Lab Work: Get this checked by your TA 25 pts NOTEBOOK:

- <u>5 pts 1.</u> Check that their lab notebook is organized.
- <u>5 pts</u> <u>2.</u> Description of the project.
- 10 pts 3. Description of the design work.
- 5 pts 4. Design Work:
 - 1 pt Schematic of the circuit (PSpice printout or drawn out by hand).
 - 2 pts The voltage gain and R_{out} hand calculations placed in their notebook and should correctly

match their particular small-signal equivalent circuit or explain why it is different.

2 pts Comparison of PSpice simulation versus measured values including the midband

gain and R_{out}.

75 pts PROTOTYPE:

- 10 pts 1. Verification that the gain is at least 70V/V amplification
- 20 pts 2. Must have at least one BJT amplifier.
- 10 pts 3. Must have more than 1 stage.
- 10 pts 4. Correct amplification at their midband gain.
- 10 pts 5. Amplification remains consistent over 200Hz to 2kHz
- 10 pts 7. Verification that the amplifier works with the microphone/speaker.
- <u>5 pts</u> 8. Verify that the circuit does not distort the voice signals and that the voice is being amplified.