1e material we have covered so far this semester is summarized (but NOT limited to) below:

Understand the basic operation of a MosFet:

- 3 regions of operation: cutoff, triode, saturation and know all current equations associated with each region and what their cross sections look like
- the I_{D} versus V_{DS} graph

Understand the bias point concept for linear amplification.
Be able to separate the DC and AC analysis for a circuit containing a MosFet.
Be able to analyze a circuit (with or without cap in it) containing a MosFet for DC operation.
Be able to draw a small-signal model of a MosFet circuit.
Be able to analyze a small-signal circuit to find overall gain, midband gain, input resistance, and output sistance.
Determine ω_{L} and ω_{H} or f_{L} and f_{H}.

et $\mathrm{V}_{\mathrm{t}}=1 \mathrm{~V}, \mathrm{k}_{\mathrm{n}}{ }^{\prime}(\mathrm{W} / \mathrm{L})=1 \mathrm{~mA} / \mathrm{V}^{2}$, and $\lambda=0$.

1) Draw the small-signal equivalent circuit
) Analyze the circuit to find $A_{v}=V_{o} / V_{i n}, R_{\text {in }}$ and $R_{\text {out }}$
.) Find all low frequency pole values
) Find ω_{H} given $\mathrm{Cgs}=10 \mathrm{pF}$ and $\mathrm{C}_{\mathrm{gd}}=0.1 \mathrm{pF}$.

