150 pts Lab \#2 Notebook Grading

THE FOLLOWING ITEMS ARE REQUIRED:

- Student's work reproducible from notebook.
- Title and date for each lab section.
- Written in ink.
- Student signed every page.
- Student dated every page.

30 pts PRE-LAB:

10 pts (1a)
6 pts Design a circuit to produce Vout $=$ Vin.
10 pts (2)
6 pts Design a non-inverting amplifier to produce a gain of $101 \mathrm{~V} / \mathrm{V}$.
4 pts Build the non-inverting amplifier on your breadboard.
10 pts (2a)
5 pts Description of slew-rate.
$5 \mathrm{pts} \quad$ Description of clipping.

30 pts EXPERIMENT 1:

$\frac{5 \mathrm{pts} 1 .}{1 \mathrm{pt}}$ Measurement of $\mathrm{V}_{\text {out. }}$
1 pt Measurement of current through the 1 k "load" resistor.
3 pts Describe in detail where the additional current comes from.
15 pts 2.
10 pts Created Bode magnitude plot.
5 pts Rough sketch of the Bode magnitude plot with the following points marked: low-frequency value in the flat section, "corner" frequency (f_{c}), and the downward slope.
5 pts 3. Comparison of measured f_{c} and expected f_{c}.
5 pts 4. Verification that $V_{\text {out }} \sim V_{s}$ for a reasonable frequency.

50 pts EXPERIMENT 2:

15 pts (1b) Verification of gain (should be $101 \mathrm{~V} / \mathrm{V}$) for a low-frequency value.
5 pts (1c) -3 dB point.
5 pts (1e) 2 measurements beyond f_{c} and the slope of the frequency response curve.
5 pts (1f)
2 pts Measurement of the phase shift at f_{c}
3 pts Comparison of the theoretical phase-shift $\left(-45^{\circ}\right)$ to your measured phase-shift.
5 pts (1g)
$1 \mathrm{pt} \quad$ Measurement of the gain at $5 \mathrm{f}_{\mathrm{c} \text {. }}$.
1 pt Measurement of the gain and phase-shift at $10 \mathrm{f}_{\mathrm{c}}$.
$1 \mathrm{pt} \quad$ Comparison of theoretical gain decrease (factor of 2) to your measured gain decrease.
2 pts Comparison of theoretical phase-shift of -90° at $10 \mathrm{f}_{\mathrm{c}}$.
5 pts (2a)
$1 \mathrm{pt} \quad$ Sketch of the triangular waveform and indication of the slewing on the sketch.
1 pt Measurement of the slope of the triangular waveform.
3 pt Comparison of measured slew-rate to the slew-rate on the data sheet.
5 pts (2b)
$1 \mathrm{pt} \quad$ Value for fmax.
1 pt Measurement of the output voltage (Vpp) at fmax.
3 pts Comparison of fmax to the theoretical value of fmax.
5 pts (3a)
1 pt Sketch of the clipping waveform and indication of the clipping on the sketch.
1 pt Measurements of the clipping levels $\mathrm{L}+$ and L .
3 pts Comparison of the data-sheet clipping levels to your measured clipping values.

40 pts EXPERIMENT 3

25 pts 1.
10 pts Circuit built correctly.
15 pts Circuit works.
8 pts 2. Description of how the volume-control works.
7 pts 3. How much current is being pulled away from the power-supply.

