The exam will cover

1. Review the questions you were asked on the homeworks.

2. Laplace transforms, be prepared to look up and adapt table entries
 - Initial and final values

3. Inverse Laplace transforms (partial fractions)

4. Relationship of signals to pole locations Figs 2.1 & 2.2 on page 7

5. Boundedness and convergence of signals
 - Bounded if all poles in LHP, no double poles on jω-axis
 - Converges to 0 if all poles LHP. Converges to a non-zero value if a single pole is at zero

6. \(H(s) \) of circuits

 \[Z(s) \rightarrow R \rightarrow L_s \rightarrow \frac{1}{C_s} \]

 Be able to find \(\frac{V_{out}(s)}{V_{in}(s)} \) or any other output over input.
 - Review voltage dividers and current dividers

7. Block Diagrams & their transfer functions
 - Standard feedback loop transfer function

8. BIBO Stability (Systems)
 - BIBO if all poles in LHP, no poles on jω-axis

9. Impulse & step responses
 - \(h(t) \)

 \[\frac{1}{s} \cdot H(s) \]

10. Steady-state (DC gain = \(H(0) \)) & transient step responses

11. Effects of pole locations on step response, see Fig 3.12, p.36.

12. Sinusoidal responses, effects of poles & zeros, etc.
 - Steady-state AC analysis to get \(Y(j\omega) \) & \(y_{ss}(t) \)
 - (Sinusoidal steady-state transfer function = \(H(j\omega) \))
 - Review complex math relations
 - Conversions
 - Add & Subtract
 - Multiply and divide

13. Transient sinusoidal response
 - You should be ready to do partial fraction expansion to the first (transient) term from:

 \[H(s) \times \frac{A}{s^2 + \omega^2} \quad \text{or} \quad \frac{B}{s^2 + \omega^2} \]

 \[A \cdot \cos(\omega t) \quad \text{or} \quad B \cdot \sin(\omega t) \]

14. Effect of initial conditions

 \[Y(s) = \frac{b_2 s^2 + b_1 s + b_0}{s^2 + a_1 s + a_0} \cdot X(s) + \frac{s \cdot y(0) + \frac{d}{dt} y(0) + a_1 y(0) - b_2 s x(0) - b_2 \frac{d}{dt} x(0) - b_1 s x(0)}{s^2 + a_1 s + a_0} \]

 May ask question like points on p. 43
 - May give \(H(s) \), \(a's \) & \(b's \) \(x(0) \)s and \(y(0) \)s. and ask for effect of initial conditions

Download old exams from HW page on class web site.
15. The advantages of state space over classical frequency-domain techniques.
 - Multiple input / multiple output systems
 - Can model nonlinear systems
 - Can model time varying systems
 - Can be used to design optimal control systems
 - Can determine controllability and observability

16. Electrical analogies of mechanical systems, particularly translational and rotational systems.
 Review the handout and homeworks 8 & 9. Open-book part only.

17. Control system characteristics and the objectives of a "good" control system. See pgs. 59 - 60
 - Stable
 - Tracking
 - fast
 - smooth
 - minimum error (often measured in steady state)
 - Reject disturbances
 - Insensitive to plant variations
 - Tolerant of noise
 Be able to relate these to poles and zeros on the real and imaginary axis (where possible)

 1. System stable
 2. \(C(s) \) or \(P(s) \) has pole @ 0
 3. \(C(s) \) or \(P(s) \) No zero @ 0

 1. System stable
 2. \(C(s) \) has pole @ 0
 3. \(C(s) \) has zero @ 0 But bad for above

20. Routh-Hurwitz method. Remember, this is performed on the closed-loop transfer function.
 Be able to do this with variable such as "k" Open-book part only.

21. Root - Locus method
 a) Main rules and concepts (Memorize)
 1. Root-locus plots are symmetric about the real axis.
 2. On the real axis, spaces left of an odd number of O-L poles and zeros are always part of the locus.
 (Essentially, every other space on the real axis (counting leftward) is part of the plot.)
 3. Each O-L pole originates \((k = 0)\) one branch. \((n)\)
 4. Each O-L zero terminates \((k = \infty)\) one branch. \((m)\)
 5. All remaining branches go to \(\infty\). \((n - m)\)
 These remaining branches approach asymptotes as they go to \(\infty\).
 \[
 \text{centroid} = \sigma = \frac{\sum \text{OLpoles} - \sum \text{OLzeros}}{n - m}
 \]
 \((\#\text{poles} - \#\text{zeros})\)
 4. The origin of the asymptotes is the centroid.
 5. The angles of the asymptotes
 \[
 \begin{array}{c|ccc|c}
 n - m & \text{angles (degrees)} & \text{angles (degrees)} & \text{angles (degrees)} & \text{angles (degrees)} \\
 \hline
 2 & 90 & 270 & & \\
 3 & 60 & 180 & 300 & \\
 4 & 45 & 135 & 225 & 315 \\
 \end{array}
 \]
6. The angles of departure (and arrival) of the locus are almost always:

\[\text{OR: } \]

7. Gain at any point on the root locus:
\[k = \frac{1}{|G(s)|} \]

8. Complex angle of \(G(s) \) at any point on the root locus:
\[\arg(G(s)) = \arg(N(s)) - \arg(D(s)) = \pm 180^\circ, \pm 540^\circ, \ldots \]
Or:
\[\arg\left(\frac{1}{G(s)}\right) = \arg(D(s)) - \arg(N(s)) = \pm 180^\circ, \pm 540^\circ, \ldots \]

1. The breakaway points are also solutions to:
\[\sum_{\text{all}} \frac{1}{(s - p_i)} = \sum_{\text{all}} \frac{1}{(s - z_i)} \]

2. Departure angles from complex poles:

c) Root Locus general, Interpretation and design

1. Concepts of what a root locus plot is and what it tells you. Movement of poles
2. Good vs bad, fast response vs slow, OK damping vs bad.
3. Important conclusions from root locus, section 4.4.5, p. 84.
4. Compensators, Bring your crib sheet.
 - Know pole & zero locations of P, PI, lag, PD, lead & PID Compensators.
 - PI and Lag, purpose and design, ties in with steady-state error
 - PD and Lead, purpose and design ties in with root locus angle rules
 - PID & lead-lag design order & why (good closed-book question)

Compensator Circuits Open-book part only.

d) Unconventional root-locus

22. Bode Plots

Be able to draw both magnitude and phase plots
I may ask you to start with a circuit

Basic rules
Complex poles an zeros Open-book part only.

Bode to transfer function
GM, PM & DM

24. Material from all labs Good for closed-book questions

Be able to find a transfer function for a system with multiple feedback paths, like you did in the PID lab and again in lab 8.
Phase-locked loops How does it work The loop block diagram
Material new to the Final: Nyquist Plots & Discrete-time Signals & Systems ~1/2 of exam

1. Nyquist plots

You may be asked to draw a simple one. At minimum you should;

- Be able to find the start point (DC gain \(s = 0 = \omega \)) from the transfer function
- Find the final value (\(\omega = \infty \)) and the approach angle to the final value.

Concepts of what a Nyquist plot is and what it tells you. \(Z = N + P \)

Be able to count encirclements, with or without the \(\omega < 0 \) part of the plot.

Be able to handle poles at the origin.

GM & PM

2. Discrete signals

\[x(k) \]

3. z-transform

\[X(z) = \sum_{k=0}^{\infty} x(k)z^{-k} \]

Finite-length signals have all poles at zero

4. Relationship of signals to pole locations, Fig 6.9, p159.

- lines of constant damping
- Speed of decay

5. Properties of the z-transform

- Linear
- Right-shift = delay = multiply by \(z^{-1} = \frac{1}{z} \)
- Left-shift = advance = multiply by \(z \)
- Initial value = \(x(0) = X(\infty) \)
- Final value (DC) = \(x(\infty) = (z-1) \cdot X(z) \)

6. Inverse z-transforms (partial fractions & long division)

- Divide by \(z \) first: \(\frac{X(z)}{z} \)

Poles on real axis (not at zero):

- Open-book or table given.

Complex poles:

- \(\frac{B \cdot z}{z - p} + \frac{B \cdot z}{z - p} \)

7. Boundedness and convergence of signals, relate to continuous-time signals

- Bounded if all poles in inside unit circle, no double poles on unit circle
- Converges to 0 if all poles inside unit circle. Converges to a non-zero value if a single pole is at 1

8. Difference equations, be able to get \(H(z) \)

9. Discrete-time systems, FIR (all poles at zero), IIR (some poles not at zero)

10. BIBO Stability, all poles inside unit circle.

11. Step & Sinusoidal responses, effects of poles & zeros, etc.

- DC gain = \(H(1) \)
- Sinusoidal: \(H(e^{j\Omega o}) = \left| H \right| e^{j\theta_H} \)

- Multiply magnitudes and add angles

12. Initial Conditions, p. 179

13. Implementations, p180 - 183, be able to go back and forth to \(H(z) \) Open-book part only.

Blocks to transfer function may be in closed-book part

14. Same Feedback system as in continuous-time and Root locus works the same but is interpreted very differently.