1. Problem 6.1 (p.186) in the Bodson text. Find $x(0)$ if the z-transform of $x(k)$ is
a) $\mathrm{X}(\mathrm{z})=\frac{\mathrm{a} \cdot \mathrm{z}-1}{\mathrm{z}-1}$
b) $X(z)=\frac{z}{z^{2}-a \cdot z+a^{2}}$
2. Problem 6.3 in the text. Use partial fraction expansions to find the $x(k)$ whose z-transform is
a) $X(z)=\frac{1}{(z-1) \cdot(z-2)}$
b) $X(z)=\frac{z}{z^{2}-2 \cdot z+2}$
3. Problem 6.4 in the text. Sketch the time function $x(k)$ that you would associate with the following poles.
Only a sketch is required, but be as precise as possible.
a) $\mathrm{p}_{1}=0.9 \cdot \mathrm{j}$,
$\mathrm{p}_{2}=-0.9 \cdot \mathrm{j}$
b) $\mathrm{p}_{1}=1$,
$\mathrm{p}_{2}=-1$
c) $\mathrm{p}_{1}=0.3$,
$p_{2}=0.9$

Answers

1. a) a
b) 0
2. a) $\frac{1}{2} \cdot \delta(\mathrm{k})-1+\frac{1}{2} \cdot 2^{\mathrm{k}}$
b) $(\sqrt{2})^{k} \cdot \sin \left(\frac{\pi}{4} \cdot k\right)$
3. Actual signals may have different magnitudes and/or phase angles. You can't tell those things from the pole locations.
a) $x(k)=0.9^{k} \cdot \cos \left(\frac{\pi}{2} \cdot k\right)$

Or many others, depending on relative magnitudes
c)

Or many others, depending on relative magnitudes
d) $x(k)=\cos \left(\frac{\pi}{6} \cdot k\right)$

