ECE 3510 homework # Z1 Due:

A.Stolp 4/13/06

1. Problem 6.1 (p.186) in the Bodson text. Find x(0) if the z-transform of x(k) is

a)
$$X(z) = \frac{a \cdot z - 1}{z - 1}$$

b)
$$X(z) = \frac{z}{z^2 - a \cdot z + a^2}$$

2. Problem 6.3 in the text.

Use partial fraction expansions to find the x(k) whose z-transform is

a)
$$X(z) = \frac{1}{(z-1)\cdot(z-2)}$$

$$X(z) = \frac{1}{(z-1)\cdot(z-2)}$$
 b) $X(z) = \frac{z}{z^2 - 2\cdot z + 2}$

3. Problem 6.4 in the text. Sketch the time function x(k) that you would associate with the following poles. Only a sketch is required, but be as precise as possible.

a) $p_1 = 0.9 \cdot j$, b) $p_1 = 1$, c) $p_1 = 0.3$, d) $p_1 = e^{j \cdot \frac{\pi}{6}}$, $p_2 = e^{-j \cdot \frac{\pi}{6}}$

a)
$$p_1 = 0.9 \cdot j$$

b)
$$p_1 = 1$$

c)
$$p_1 = 0.3$$
,

d)
$$p_1 = e^{j \cdot \frac{n}{6}}$$
, $p_2 = e^{-j \cdot \frac{n}{6}}$

$$p_2 = -0.9$$

$$p_2 = -1$$

$$o_2 = 0.9$$

Answers

2. a)
$$\frac{1}{2} \cdot \delta(\mathbf{k}) - 1 + \frac{1}{2} \cdot 2^{\mathbf{k}}$$
 b) $(\sqrt{2})^{\mathbf{k}} \cdot \sin\left(\frac{\pi}{4} \cdot \mathbf{k}\right)$

b)
$$(\sqrt{2})^k \cdot \sin\left(\frac{\pi}{4} \cdot k\right)$$

3. Actual signals may have different magnitudes and/or phase angles. You can't tell those things from the pole locations.

a)
$$x(k) = 0.9^k \cdot \cos\left(\frac{\pi}{2} \cdot k\right)$$

Or many others, depending on relative magnitudes

Or many others, depending on relative magnitudes

d)
$$x(k) = \cos\left(\frac{\pi}{6} \cdot k\right)$$

