Yesterday we drew a block diagram on the board. Let's examine those block a little more closely

What's inside?

How are the input and output related? If you know the input, how do you find the outout? Sometimes we can just multiply the input by the expression in the box to get the output. Then the expresion in the box is called a transfer function.

In that case, the transfer function $=\frac{\text { output }}{\text { input }}$

A very simple case, the potentiometer $\quad 12 \cdot \mathrm{~V}$

Nice... too bad it works for so few things in the time domain! Simple voltage dividers, amplifiers, and ?? In electrical systems there are always capacititance and inductance.

$$
\begin{aligned}
& \left|\left.\right|^{\mathrm{i}} \mathrm{C}=\mathrm{C} \cdot \frac{\mathrm{~d}}{\mathrm{dt}} \mathrm{v} \mathrm{C}\right. \\
& \hline \\
& \hline
\end{aligned}{ }^{\mathrm{V}}{ }^{\mathrm{v}} \mathrm{C}=\frac{1}{\mathrm{C}} \cdot \int \mathrm{i}_{\mathrm{C}} \mathrm{dt}
$$

$$
\frac{1}{L} \cdot \int{ }^{\mathrm{v}}{ }_{\mathrm{L}} \mathrm{dt}=\left.\mathrm{i}_{\mathrm{L}}\right|_{\mathrm{V}} ^{\mathrm{Q}}{ }_{\mathrm{v}}^{\mathrm{L}}=\mathrm{L} \cdot \frac{\mathrm{~d}}{\mathrm{dt}} \mathrm{i} \mathrm{~L}
$$

We'll have to avoid capacitors and inductors-- they're too complicated... You can't just multiply when there are differentials involved
How about the mechanical world? $F=m a$, Great, no differentials... uh, except... $F=m \cdot a=m \cdot \frac{d}{d t} v \quad m \cdot \frac{d^{2}}{d t^{2}} x$
And then there are springs: $\quad \mathrm{F}=\mathrm{k} \cdot \mathrm{x}=\mathrm{k} \cdot \int^{\bullet} \mathrm{vdt}=\mathrm{k} \cdot \iint \mathrm{adt} d \mathrm{~d}$
Isn't there some way that we could possibly replace all this differentiation and integration with multiplication and division?

Laplace transforms

$$
\frac{\mathrm{d}}{\mathrm{dt}} \text { operation can be replaced with } \mathrm{s}, \quad \text { and } \quad \quad \quad \text { Idt can be replaced by } \frac{1}{\mathrm{~s}}
$$

ECE 2210 Lecture 2 notes p2

Recall from your Ordinary Differential Equations class, the Laplace transform method of solving differential equations. The Laplace transform allowed you to change time-domain functions to frequency-domain functions.

1) Transform your signals into the frequency domain with the Laplace transform.

$$
F(s)=\int_{0}^{\infty} \mathrm{f}(\mathrm{t}) \cdot \mathrm{e}^{-\mathrm{s} \cdot \mathrm{t}} \mathrm{dt} \quad \text { Unilateral Laplace transform }
$$

2) Solve your differential equations with plain old algebra, where:

$$
\frac{\mathrm{d}}{\mathrm{dt}} \text { operation can be replaced with s, and } \quad \int \quad \text { dt can be replaced by } \frac{1}{\mathrm{~s}}
$$

3) Transform your result back to the time domain with the inverse Laplace transform.

$$
f(t)=\frac{1}{2 \cdot \pi \cdot j} \cdot \int_{c-j \infty}^{c+j \infty} F(s) \cdot e^{s \cdot t} d s
$$

OK, truth be told, we never actually use the inverse Laplace transform. We use tables instead.

So, the first step is to transform the signals into the frequency domain with the Laplace transform. Maybe we ought to talk a little about signals first...

Signals

For us: A time-varying voltage or current that carriers information.
In some unpredictable fashion Audio, video, position, temperature, digital data, etc...
DC is not a signal, Neither is a pure sine wave. If you can predict it, what information is it providing??
Neither DC nor pure sine wave have any "bandwidth".

Recall Fourier series: Any periodic waveform can be represented by a series of sinewaves of different frequencies.

Laplace transforms

Let's evaluate some of these and see if we can make a table
Ex. $1 \mathrm{f}(\mathrm{t})=\delta(\mathrm{t}) \quad$ The Impulse or "Dirac" function, not a very likely signal in real life.

$$
\begin{array}{rlrl}
\mathrm{F}(\mathrm{~s}) & =\int_{0}^{\infty} \delta(\mathrm{t}) \cdot \mathrm{e}^{-\mathrm{s} \cdot \mathrm{t}} \mathrm{dt} & & \text { but: } \begin{array}{c}
\delta(\mathrm{t}) \cdot \mathrm{g}(\mathrm{t}) \\
\text { any function }
\end{array}=\delta(\mathrm{t}) \cdot \mathrm{g}(0) \quad \text { so: } \\
& =\int_{0}^{\infty} \delta(\mathrm{t}) \cdot \mathrm{e}^{-\mathrm{s} \cdot 0} \mathrm{dt} \quad=\int_{0}^{\infty} \delta(\mathrm{t}) \cdot 1 \mathrm{dt} \quad=1
\end{array}
$$

ECE 3510 Lecture 2 notes p3
Ex. $2 \mathrm{f}(\mathrm{t})=\mathrm{u}(\mathrm{t}) \quad$ The unit-step function, a constant value (DC) signal

Ex. $3 \mathrm{f}(\mathrm{t})=\mathrm{u}(\mathrm{t}) \cdot \mathrm{e}^{\mathrm{at}}$

$$
\begin{aligned}
& F(s)=\int_{0}^{\infty} e^{a t} \cdot e^{-s \cdot t} d t \\
& 0=\int_{0}^{\infty} e^{(a-s) \cdot t} d t \\
& 1 \\
&=\left.\frac{1}{(a-s)} \cdot e^{(a-s) \cdot t}\right|_{0} ^{\infty} \cdot e^{(a-s) \cdot \infty}-\frac{1}{(a-s)} \cdot e^{(a-s) \cdot 0} / 1 \\
& \text { if } s>a
\end{aligned}
$$

for negative a values

This is the single most-important Laplace transform case. In fact we really don't need any others. Ex. 1 can be thought of as this case with $\mathrm{a}=-\infty$. Ex. 2 can be thought of as $\mathrm{a}=0$. And finally, all sinusoids can be made from exponentials if you let the poles (a) be complex. Remember Euler's equations...

Euler's equations $\quad e^{j \cdot \omega \cdot t}=\cos (\omega t)+j \cdot \sin (\omega t) \quad e^{\left(\alpha_{0} \cdot t+j \cdot \omega \cdot t\right)}=e^{\alpha \cdot t} \cdot(\cos (\omega t)+j \cdot \sin (\omega t))$

ECE 3510 Lecture 2 notes p4

$$
\text { Euler's equations } \quad \cos (\omega \cdot \mathrm{t})=\frac{\mathrm{e}^{\mathrm{j} \cdot \omega \cdot \mathrm{t}}+\mathrm{e}^{-\mathrm{j} \cdot \omega \cdot \mathrm{t}}}{2} \quad \sin (\omega \cdot \mathrm{t})=\frac{\mathrm{e}^{\mathrm{j} \cdot \omega \cdot \mathrm{t}}-\mathrm{e}^{-\mathrm{j} \cdot \omega \cdot \mathrm{t}}}{2 \cdot \mathrm{j}}
$$

Ex. $4 f(t)=u(t) \cdot \cos (\omega \cdot t)$

$$
\begin{aligned}
& \mathrm{F}(\mathrm{~s})=\int_{0}^{\infty} \cos (\omega \cdot \mathrm{t}) \cdot \mathrm{e}^{-\mathrm{s} \cdot \mathrm{t}} \mathrm{dt} \quad=\int_{0}^{\infty}\left(\frac{\mathrm{e}^{\mathrm{j} \cdot \omega \cdot \mathrm{t}}+\mathrm{e}^{-\mathrm{j} \cdot \omega \cdot \mathrm{t}}}{2}\right) \cdot \mathrm{e}^{-\mathrm{s} \cdot \mathrm{t}} \mathrm{dt} \quad=\int_{0}^{\infty} \frac{\mathrm{e}^{(\mathrm{j} \cdot \omega-\mathrm{s}) \cdot \mathrm{t}}+\mathrm{e}^{-(\mathrm{j} \cdot \omega+\mathrm{s}) \cdot \mathrm{t}}}{2} \mathrm{dt} \\
& =\frac{1}{2} \cdot \int_{0}^{\infty} e^{(j \cdot \omega-s) \cdot t} d t \quad+\frac{1}{2} \cdot \int_{0}^{\infty} e^{-(\mathrm{j} \cdot \omega+\mathrm{s}) \cdot \mathrm{t}} \mathrm{dt} \\
& =\frac{1}{2} \cdot\left(\frac{1}{\mathrm{j} \cdot \omega-\mathrm{s}}\right) \cdot \mathrm{e}^{(\mathrm{j} \cdot \omega-\mathrm{s}) \cdot \mathrm{t}} \quad\left|\begin{array}{l}
\infty \\
0
\end{array} \quad+\frac{1}{2} \cdot\left[\frac{1}{-(\mathrm{j} \cdot \omega+\mathrm{s})}\right] \cdot \mathrm{e}^{-(\mathrm{j} \cdot \omega+\mathrm{s}) \cdot \mathrm{t}}\right|_{0}^{\infty} \\
& =0-\frac{1}{2} \cdot\left(\frac{1}{j \cdot \omega-\mathrm{s}}\right) \cdot(1)+0-\frac{1}{2} \cdot\left[\frac{1}{-(j \cdot \omega+\mathrm{s})}\right] \cdot(1) \quad=\frac{-1}{-2 \cdot j \cdot \omega-2 \cdot \mathrm{~s}}+\frac{-1}{2 \cdot \mathrm{j} \cdot \omega-2 \cdot \mathrm{~s}} \\
& =\frac{1}{2 \cdot j \cdot \omega+2 \cdot \mathrm{~s}}+\frac{-1}{2 \cdot \omega-2 \cdot \mathrm{~s}}=\frac{(2 \cdot \mathrm{j} \cdot \omega-2 \cdot \mathrm{~s})-(2 \cdot \mathrm{j} \cdot \omega+2 \cdot \mathrm{~s})}{(2 \cdot \mathrm{j} \cdot \omega+2 \cdot \mathrm{~s}) \cdot(2 \cdot \mathrm{j} \cdot \omega-2 \cdot \mathrm{~s})} \\
& =\frac{-4 \cdot \mathrm{~s}}{(2 \cdot \mathrm{j} \cdot \omega+2 \cdot \mathrm{~s}) \cdot(2 \cdot \mathrm{j} \cdot \omega-2 \cdot \mathrm{~s})}=\frac{-4 \cdot \mathrm{~s}}{4 \cdot \mathrm{j}^{2} \cdot \omega^{2}-4 \cdot \mathrm{~s}^{2}}=\frac{-\mathrm{s}}{-\omega^{2}-\mathrm{s}^{2}}=\frac{\mathrm{s}}{\omega^{2}+\mathrm{s}^{2}}
\end{aligned}
$$

What if the poles have a real component? $\quad f(t)=u(t) \cdot e^{\sigma \cdot t} \cdot \sin (\omega \cdot t)$

ECE 3510 Lecture 2 notes p4

ECE 3510 Lecture 2 notes p5

Ex. 5 Multiply by time property

$f(t)=u(t) \cdot t \cdot e^{a \cdot t} \quad F(s)=\int_{0}^{\infty} t \cdot e^{a \cdot t} \cdot e^{-s \cdot t} d t \quad=\int_{0}^{\infty} t \cdot e^{(a-s) \cdot t} d t$
Remember integration by parts:

The easy way:
Use the "multiplication by time" property \#5 on p. 8 of the Bodson textbook

$$
\begin{aligned}
& t \cdot x(t)<-\frac{d}{d s} X(s) \\
& t \cdot e^{\mathrm{a} \cdot \mathrm{t}} \quad \ll>-\frac{\mathrm{d}}{\mathrm{ds}}\left(\frac{1}{\mathrm{~s}-\mathrm{a}}\right)=-\frac{\mathrm{d}}{\mathrm{ds}}\left[(\mathrm{~s}-\mathrm{a})^{-1}\right] \quad=-\frac{1}{-1} \cdot \frac{1}{(s-\mathrm{a})^{2}} \cdot\left[\frac{\mathrm{~d}}{\mathrm{ds}}(\mathrm{~s}-\mathrm{a})\right]=\frac{1}{(\mathrm{~s}-\mathrm{a})^{2}} \cdot 1=\frac{1}{(\mathrm{~s}-\mathrm{a})^{2}}
\end{aligned}
$$

Anything that works for exponentials also works for sines and cosines...

Signal Type, Boundedness, and Convergence can be predicted from the poles
Poles in the Open-Left-Half-Plane (OLHP) Real part of pole is negative $\operatorname{Re}\left(s_{p}\right)<0$

Bounded signals, Converge to zero

Single Poles on Imaginary Axis Real part of pole is zero $\quad \operatorname{Re}\left(s_{p}\right)=0$

Bounded signal,
Converges to DC value

Bounded signals, Don't Converge

Double Poles on Imaginary Axis or

in the Open-Right-Half-Plane (ORHP)

