A.Stolp 2/14/06, rev,2/11/09

This method is based on the method of Linear Graphs. In Linear Graphs, all systems are reduced to a universal symbology peculiar to Linear Graphs (system graph) and then analyzed by methods very similar to those used with electric circuits. Since we, as electrical engineers, are already well versed in the symbology of electric circuits, my variation of linear graphs reduces mechanical systems to electric circuits and leaves them in that symbology for ready analysis by methods, tools and computer programs that we are already familiar with.

Across and Through Variables

	<u>Across Variable</u>	<u>Through Variable</u>
Electrical	V = voltage (volts) or (V)	I = current (Amps) or (A)
Mechanical translational	$v = velocity \left(\frac{m}{sec}\right)$	F = force (newtons) or (N) or $\left(\text{Kg} \cdot \frac{\text{m}}{\text{sec}^2} \right)$
Mechanical rotational	ω = angular velocity $\left(\frac{\text{rad}}{\text{sec}}\right)$	$T = torque (N \cdot m)$
Fluid	$P = pressure \left(\frac{N}{m^2}\right) \text{ or } (Pa)$	$Q = flow \left(\frac{m^3}{sec} \right)$

Elements	Dissipation	Across Variable Energy Storage	<u>Through Variable</u> <u>Energy Storage</u>
Electrical	$R = resistance \left(\frac{V}{A}\right) \text{ or } (\Omega)$	C = capacitance $\left(\frac{A \cdot sec}{V}\right)$ or (F)	$L = inductor \left(\frac{V \cdot sec}{A} \right) or (H)$
Mechanical translational	$B = damping \left(\frac{N \cdot sec}{m} \right)$	$M = mass (Kg) \text{ or } \left(\frac{N \cdot \sec^2}{m}\right)$	$k = $ Spring constant $\left(\frac{N}{m}\right)$
Mechanical rotational	$B = \text{damping} \left[\frac{N \cdot m}{\left(\frac{\text{rad}}{\text{sec}} \right)} \right]$	$J = \text{moment of inertia} \left(\frac{\mathbf{N} \cdot \mathbf{m}^3}{\text{sec}^2} \right)$ $\left(\mathbf{Kg} \cdot \mathbf{m}^2 \right) \text{or} \left(\frac{\mathbf{N} \cdot \mathbf{m}^3}{\text{sec}^2} \right)$	$k = Spring constant \left(\frac{N \cdot m}{rad}\right)$
Fluid	$R_f = \text{fluid resistance} \left(\frac{N \cdot \text{sec}}{\text{m}^5} \right)$	$C_f = \text{fluid capacitance}\left(\frac{m^5}{N}\right)$	I = fluid inertia $\left(\frac{Kg}{m^4}\right)$

Basic Electric Circuit Analysis

sic Liectric Circuit Ariarysis					
Element	Parts like resistors, capacitors, inductors & transformers				
Wires and connections	Direct the current, but do not affect voltage				
Circuit	Wires and elements connected to form loops				
Voltage	Measured as a difference across an element				
Current	Flows through a wire or element				
Kirchhoff's Current Law (KCL)	Current in = current out of all elements, wires & connections				
Kirchhoff's Voltage Law (KVL)	Voltage gains = voltage "losses" around any circuit loop				
Node	Connected wires and connections which all have the same voltage				
Ground	Zero-reference node for all other nodal voltages				
Branch	Connected wires and elements which all have the same current				
Power $P = V \cdot I$	Power = Across variable x Through variable				
Voltage Source	Constant voltage regardless of current in or out				
Current Source	Constant current regardless of voltage + or -				

Passive Electrical Elements

Resistors

series: $R_{eq} = R_1 + R_2 + R_3 + \dots$

voltage divider: Exactly the same

current through each resistor

 $V_{Rn} = V_{total} \cdot \frac{R_n}{R_1 + R_2 + R_3}$

parallel: $R_{eq} = \frac{1}{\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots}$ R_1 R_2 R_3

Exactly the same voltage across each

divider: $I_{Rn} = I_{total} \cdot \frac{\frac{1}{R_n}}{\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}}$ current divider:

Resistors dissipate power $P = V \cdot I = I^2 \cdot R = \frac{V^2}{R}$

Capacitors

$$C = \frac{Q}{V}$$
 farad = $\frac{\text{coul}}{\text{volt}} = \frac{\text{amp sec}}{\text{volt}}$

apacitors
$$C = \frac{Q}{V} \quad \text{farad} = \frac{\text{coul}}{\text{volt}} = \frac{\text{amp·sec}}{\text{volt}} \quad v_C = \frac{1}{C} \cdot \begin{bmatrix} t & & & & \\ & i_C dt & & = \frac{1}{C} \cdot \end{bmatrix} \cdot \begin{bmatrix} t & & & \\ & i_C dt + v_C(0) & & \\ & & i_C = C \cdot \frac{d}{dt} v_C \end{bmatrix}$$

$$i_C = C \cdot \frac{d}{dt} v_C$$

Energy stored in electric field: $E_C = \frac{1}{2} \cdot C \cdot V_C^2$

Capacitor voltage cannot change instantaneously

parallel:
$$C_{eq} = C_1 + C_2 + C_3 + \dots$$

$$c_1 + c_2 + c_3 + \dots$$

series:
$$C_{eq} = \frac{1}{\frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \dots}$$

Steady-state sinusoids:
$$\text{Impedance:} \ \ \mathbf{Z}_{\ C} \ = \ \frac{1}{j \cdot \omega \cdot C} \ = \ \frac{-j}{\omega \cdot C}$$

Laplace: Impedance: $\mathbf{Z}_{\mathbf{C}} = \frac{1}{C_{\mathbf{C}}}$

Current leads voltage by 90 deg

Inductors

henry =
$$\frac{\text{volt} \cdot \text{sec}}{\text{amp}}$$

$$i_{L} = \frac{1}{L} \cdot \int_{-\infty}^{t} v_{L} dt$$

ductors
$$\text{henry} = \frac{\text{volt} \cdot \text{sec}}{\text{amp}} \qquad \text{i}_{L} = \frac{1}{L} \int_{0}^{t} v_{L} dt = \frac{1}{L} \int_{0}^{t} v_{L} dt + i_{L}(0) \qquad v_{L} = L \frac{d}{dt} i_{L}$$

$$v_L = L \frac{d}{dt} i_L$$

Energy stored in magnetic field: $E_L = \frac{1}{2} \cdot LI_L^2$

Inductor current cannot change instantaneously

series:
$$L_{eq} = L_1 + L_2 + L_3 + \dots$$

parallel:
$$L_{eq} = \frac{1}{\frac{1}{L_1} + \frac{1}{L_2} + \frac{1}{L_3} + \dots}$$

Steady-state sinusoids:

Impedance:
$$\mathbf{Z}_{\mathbf{L}} = \mathbf{j} \cdot \boldsymbol{\omega} \cdot \mathbf{L}$$

Laplace: Impedance:
$$\mathbf{Z}_{L} = \mathbf{L} \cdot \mathbf{s}$$

Current lags voltage by 90 deg

Transformers (ideal)

$$P_1 = P_2$$

power in = power out

Turns ratio =
$$N = \frac{N_1}{N_2} = \frac{V_1}{V_2} = \frac{I_2}{I_1}$$
 Note: some books define the turns ratio as N_2/N_1

Equivalent impedance in primary:
$$\mathbf{Z}_{eq} = N^2 \cdot \mathbf{Z}_2 = \left(\frac{N_1}{N_2}\right)^2 \cdot \mathbf{Z}_2$$

 $Z_{eq} = \left(\frac{N_1}{N_2}\right)^2 \cdot Z_2$

You can replace the entire transformer and load with (\mathbf{Z}_{eq}) .

This "impedance transformation" can work across systems.

Mechanical system with linear motion (translational)

Mechanical translational

Through Variable:

$$F = Force$$
 (N

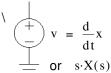
Across Variable:

$$v = velocity \left(\frac{m}{sec}\right)$$

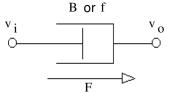
$$x = displacement (m)$$

$$\frac{V(s)}{s}$$

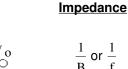
$$X(s) = displacement (m \cdot sec)$$
 (in freq domain)

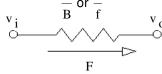

Electrical

$$V = voltage (V)$$



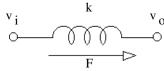
Dissipation element:

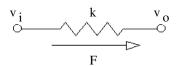

power


$$P = v \cdot F = \frac{F^2}{B}$$
$$= v^2 \cdot B$$

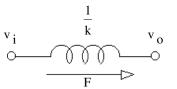
Damper or friction

Resistor



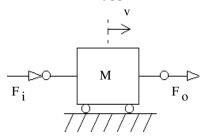

Through variable energy storage:

$$E = \frac{1}{2} \cdot \frac{1}{k} \cdot F^2 = \frac{1}{2} \cdot k \cdot x^2$$

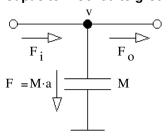

Springs are sometimes shown like this:

Spring

Inductor

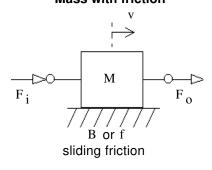


 $\frac{s}{k}$

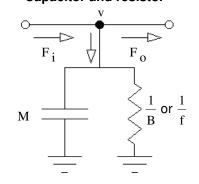

Through variable energy storage:

$$E = \frac{1}{2} \cdot M \cdot v^2$$

Mass



Capacitor hooked to ground



 $\frac{1}{\mathbf{M}}$

Mass with friction

Capacitor and resistor

 $\frac{1}{\left(\frac{1}{\mathbf{M} \! \cdot \! \mathbf{s}}\right) + \frac{1}{\left(\frac{1}{\mathbf{B}}\right)}}$

 $\frac{1}{M \cdot s + B}$

Mechanical system with circular motion (rotational)

Mechanical rotational

Through Variable:

 $T = Torque (N \cdot m)$

Across Variable:

$$\omega$$
 = angular velocity $\left(\frac{\text{rad}}{\text{sec}}\right)$

$$\int \omega \, dt$$

$$\theta$$
 = angular displacement (rad)

$$\frac{\omega(s)}{s}$$

 $\theta(s)$ = angular displacement (rad·sec) (in freq domain)

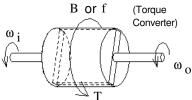
Electrical

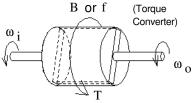
$$V = voltage (V)$$

Source:,

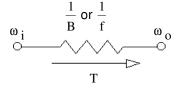
$$\omega = \frac{\mathrm{d}}{\mathrm{d}t}\theta$$

$$\sigma = \frac{\mathrm{d}}{\mathrm{d}t}\theta$$


$$\sigma = \frac{\mathrm{d}}{\mathrm{d}t}\theta$$

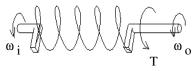

Dissipation element:

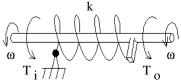
power

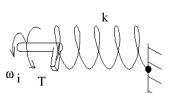

$$P = v \cdot T = \frac{T^2}{B}$$
$$= \omega^2 \cdot B$$

Damper or friction

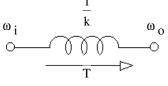
Springs

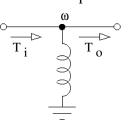

Resistor

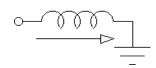

Impedance



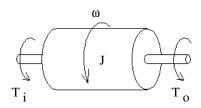
Through variable energy storage:

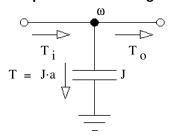

$$E = \frac{1}{2} \cdot \frac{1}{k} \cdot T^2$$





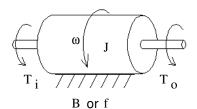
Inductor



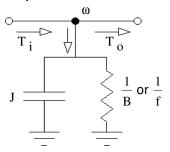

Through variable energy storage:

$$E = \frac{1}{2} \cdot J \cdot \omega^2$$

Moment of Inertia, J



Capacitor hooked to ground



J with friction

sliding friction

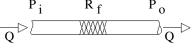
Capacitor and resistor

	1	
1		1
$\left(\frac{1}{\mathbf{J} \cdot \mathbf{s}}\right)$	+	$\overline{\left(rac{1}{\mathbf{B}} ight)}$

$$\frac{1}{J\!\cdot\! s+B}$$

ECE 3510 Electrical Analogies **p.4**

Fluid (hydraulic) system

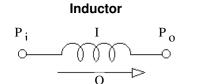

<u>Fluid</u>

Q = volumetric flow rate $\left(\frac{m^3}{m^3}\right)$ Through Variable:

 $P = Pressure \left(\frac{N}{2}\right) \text{ or } (Pa)$ Across Variable:

Fluid resistance

$$\begin{array}{cccc}
 & P_i & R_f & P_o \\
\hline
 & & & & & & \\
\hline
 & & & & \\
\hline
 & & & & & \\$$



Electrical

I = current(A)

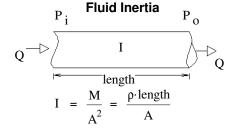
V = voltage (V)

Resistor

Sources

Impedance

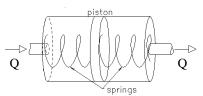
 R_{f}

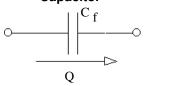

 $I \!\!\cdot \! s$

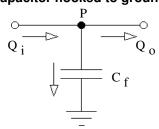
Through variable energy storage:

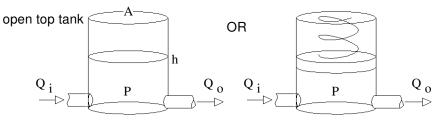
$$E = \frac{1}{2} \cdot I \cdot Q^2$$

Dissipation element:

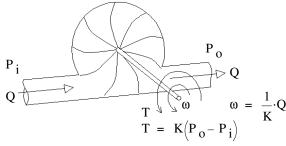

power

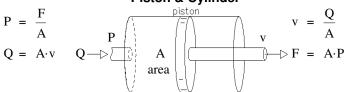

Through variable energy storage:


Fluid Capacitors



Capacitor


Capacitor hooked to ground



$$C_f = \frac{\Delta volume}{\Delta pressure}_{\text{for all capacitors}} = \frac{\Delta h \cdot A}{\Delta h \cdot \rho \cdot g} = \frac{A}{\rho \cdot g}$$
 For open top tank

Turbine or Pump

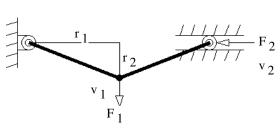
Piston & Cylinder

Turbines & pistons convert through variables to across variables & vice versa, so there are no good electrical analogies.

Yet you can still transform an impedance from a mechanical system into the fluid system. You, Il find that capacitors become inductors, inductors become capacitors and parallel swaps with series.

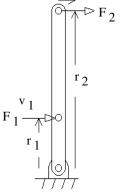
$$\mathbf{Z}_{\mathbf{eq}} = \frac{\Delta \cdot \mathbf{P}}{\mathbf{Q}} = \frac{\left(\frac{\mathbf{T}}{\mathbf{K}}\right)}{\mathbf{K} \cdot \mathbf{\omega}} = \frac{1}{\mathbf{K}^2} \cdot \frac{\mathbf{T}}{\mathbf{\omega}} = \frac{1}{\mathbf{K}^2} \cdot \frac{1}{\mathbf{Z}_2} = \frac{1}{\mathbf{K}^2 \cdot \mathbf{Z}_2}$$

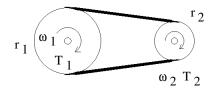
$$v = \frac{Q}{A}$$

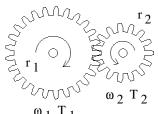

$$-\triangleright F = A \cdot P$$

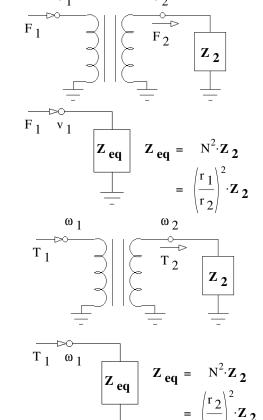
$$\mathbf{Z}_{eq} = \frac{P}{Q} = \frac{\left(\frac{F}{A}\right)}{A \cdot v} = \frac{1}{A^2} \cdot \frac{F}{v} = \frac{1}{A^2} \cdot \frac{1}{\mathbf{Z}_2} = \frac{1}{A^2 \cdot \mathbf{Z}_2}$$
The probability of the probability of

Transducers and Transformers

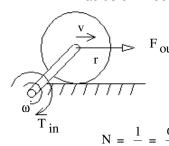

A transducer converts power from one type to another. We can model many of them with transformers. Transformers increase the through variable and correspondingly decrease the across variable or vice-versa.

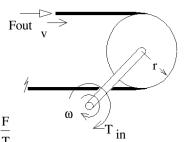

$$N = \frac{r_1}{r_2} = \frac{v_1}{v_2} = \frac{F_2}{F_1}$$

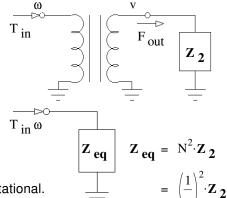

(not really this simple)


Belts, chains, & gears

r = radius of pulley or pitch radius of gears

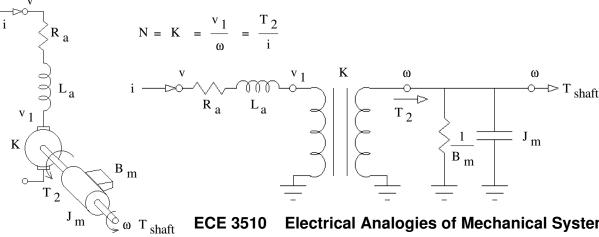



$$N = \frac{r_2}{r_1} = \frac{\omega_1}{\omega_2} = \frac{T_2}{T_1} = \text{gear tooth ratio } \left(\frac{N_2}{N_1}\right)$$



Tires, racks, & conveyors

r = radius of wheel or pitch radius of pinion gear



Note: N = r if the input is linear motion and output is rotational.

DC Motors

