This method is based on the method of Linear Graphs. In Linear Graphs, all systems are reduced to a universal symbology peculiar to Linear Graphs (system graph) and then analyzed by methods very similar to those used with electric circuits. Since we, as electrical engineers, are already well versed in the symbology of electric circuits, my variation of linear graphs reduces mechanical systems to electric circuits and leaves them in that symbology for ready analysis by methods, tools and computer programs that we are already familiar with.

Across and Through Variables

Across Variable

Electrical	$\mathrm{V}=$ voltage (volts) or (V)
Mechanical translational	$\mathrm{v}=$ velocity $\left(\frac{\mathrm{m}}{\mathrm{sec}}\right)$
Mechanical rotational	$\omega=$ angular velocity $\left(\frac{\mathrm{rad}}{\mathrm{sec}}\right)$
Fluid	$\mathrm{P}=$ pressure $\left(\frac{\mathrm{N}}{\mathrm{m}^{2}}\right)$ or (Pa)

Elements

| Electrical | $\mathrm{R}=$ resistance $\left(\frac{\mathrm{V}}{\mathrm{A}}\right)$ or (Ω) | $\mathrm{C}=$ capacitance $\left(\frac{\mathrm{A} \cdot \sec }{\mathrm{V}}\right)$ or (F) |
| :--- | :--- | :--- |$\quad \mathrm{L}=$ inductor $\left(\frac{\mathrm{V} \cdot \sec }{\mathrm{A}}\right)$ or (H)

Basic Electric Circuit Analysis

Element
Wires and connections
Circuit

Voltage

Current

Kirchhoff's Current Law (KCL)
Kirchhoff's Voltage Law (KVL)
Node
Ground
Branch
Power $\quad \mathrm{P}=\mathrm{V} \cdot \mathrm{I}$
Voltage Source

Parts like resistors, capacitors, inductors \& transformers
Direct the current, but do not affect voltage
Wires and elements connected to form loops
Measured as a difference across an element
Flows through a wire or element
Current in = current out of all elements, wires \& connections
Voltage gains = voltage "losses" around any circuit loop
Connected wires and connections which all have the same voltage
Zero-reference node for all other nodal voltages
Connected wires and elements which all have the same current
Power $=$ Across variable \times Through variable
Constant voltage regardless of current in or out

Passive Electrical Elements

Resistors

voltage divider:

$$
\mathrm{V}_{\mathrm{Rn}}=\mathrm{V}_{\text {total }} \cdot \frac{\mathrm{R}_{\mathrm{n}}}{\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}}
$$

current divider:

$$
\mathrm{I}_{\mathrm{Rn}}=\mathrm{I}_{\text {total }} \frac{\frac{1}{\mathrm{R}_{\mathrm{n}}}}{\frac{1}{\mathrm{R}_{1}}+\frac{1}{\mathrm{R}_{2}}+\frac{1}{\mathrm{R}_{3}}+\ldots}
$$

Resistors dissipate power $\mathrm{P}=\mathrm{V} \cdot \mathrm{I}=\mathrm{I}^{2} \cdot \mathrm{R}=\frac{\mathrm{V}^{2}}{\mathrm{R}}$

Capacitors

$C=\frac{\mathrm{Q}}{\mathrm{V}} \quad$ farad $=\frac{\mathrm{coul}}{\mathrm{volt}}=\frac{\mathrm{amp} \cdot \mathrm{sec}}{\mathrm{volt}}$
Energy stored in electric field: $\mathrm{E}_{\mathrm{C}}=\frac{1}{2} \cdot \mathrm{C} \cdot \mathrm{V}_{\mathrm{C}}{ }^{2}$
parallel: $\mathrm{C}_{\mathrm{eq}}=\mathrm{C}_{1}+\mathrm{C}_{2}+\mathrm{C}_{3}+\ldots$

Steady-state sinusoids:
Laplace:
$=\frac{1}{\mathrm{C}} \cdot \int_{0}^{\mathrm{t}}{ }^{\mathrm{i}} \mathrm{C}^{\mathrm{dt}+\mathrm{v}^{2}} \mathrm{C}^{(0)} \quad \mathrm{i}_{\mathrm{C}} \mathrm{C}=\mathrm{C} \cdot \frac{\mathrm{d}}{\mathrm{dt}} \mathrm{v} \mathrm{C}$
Capacitor voltage cannot change instantaneously

$$
{ }^{\mathrm{v}_{\mathrm{C}}}=\frac{1}{\mathrm{C}} \cdot \int_{-\infty}^{\mathrm{t}}{ }^{\mathrm{i}} \mathrm{C}^{\mathrm{dt}}
$$

$$
\text { Impedance: } \mathbf{Z}_{\mathbf{C}}=\frac{1}{\mathrm{j} \cdot \omega \cdot \mathrm{C}}=\frac{-\mathrm{j}}{\omega \cdot \mathrm{C}}
$$

Current leads voltage by 90 deg
Impedance: $\mathbf{Z}_{\mathbf{C}}=\frac{1}{\mathrm{C} \cdot \mathrm{s}}$
series: $\quad C_{e q}=\frac{1}{\frac{1}{\mathrm{C}_{1}}+\frac{1}{\mathrm{C}_{2}}+\frac{1}{\mathrm{C}_{3}}}+\ldots$

Inductors
henry $=\frac{\mathrm{volt} \cdot \mathrm{sec}}{\mathrm{amp}}$

$$
\begin{equation*}
\mathrm{i}_{\mathrm{L}}=\frac{1}{\mathrm{~L}} \cdot \int_{-\infty}^{\mathrm{t}} \quad{ }^{\mathrm{v}} \mathrm{dt}^{\mathrm{dt}} \tag{0}
\end{equation*}
$$

initial current

$$
=\frac{1}{\mathrm{~L}} \cdot \int_{0}^{\mathrm{t}} \mathrm{v}_{\mathrm{L}} \mathrm{dt}+\mathrm{i}_{\mathrm{L}}(0)
$$

${ }^{\mathrm{v}} \mathrm{L}=\mathrm{L} \cdot \frac{\mathrm{d}}{\mathrm{dt}} \mathrm{i} \mathrm{L}$
Energy stored in magnetic field: $\mathrm{E}_{\mathrm{L}}=\frac{1}{2} \cdot \mathrm{~L} \cdot \mathrm{I}_{\mathrm{L}}{ }^{2}$
Inductor current cannot change instantaneously
series: $\mathrm{L}_{\mathrm{eq}}=\mathrm{L}_{1}+\mathrm{L}_{2}+\mathrm{L}_{3}+\ldots$

$$
\mathrm{L}_{1} \mathrm{~m}_{3} \mathrm{~L}_{3} \mathrm{~L}_{4}
$$

Steady-state sinusoids:

Impedance: $\mathbf{Z}_{\mathbf{L}}=j \cdot \omega \cdot \mathrm{~L}$
Laplace:
Impedance: $\mathbf{Z}_{\mathbf{L}}=\mathrm{L} \cdot \mathrm{s}$
parallel: $\mathrm{L}_{\mathrm{eq}}=\frac{1}{\frac{1}{\mathrm{~L}_{1}}+\frac{1}{\mathrm{~L}_{2}}+\frac{1}{\mathrm{~L}_{3}}}+\ldots$

Current lags voltage by 90 deg

Transformers (ideal)

Ideal: $\quad P_{1}=P_{2} \quad$ power in $=$ power out
Turns ratio $=\mathrm{N}=\frac{\mathrm{N}_{1}}{\mathrm{~N}_{2}}=\frac{\mathrm{V}_{1}}{\mathrm{~V}_{2}}=\frac{\mathrm{I}_{2}}{\mathrm{I}_{1}} \quad \begin{aligned} & \text { Note: some books define } \\ & \text { the turns ratio as } \mathrm{N}_{2} / \mathrm{N}_{1}\end{aligned}$
Equivalent impedance in primary: $\mathbf{Z}_{\mathbf{e q}}=\mathrm{N}^{2} \cdot \mathbf{Z}_{\mathbf{2}}=\left(\frac{\mathrm{N}_{1}}{\mathrm{~N}_{2}}\right)^{2} \cdot \mathbf{Z}_{\mathbf{2}}$

You can replace the entire transformer and load with ($\mathbf{Z}_{\mathbf{e q}}$).
This "impedance transformation" can work across systems.

Mechanical system with linear motion (translational)

Mechanical translational

Through Variable:
Across Variable:

\int| vdt | $\mathrm{x}=\operatorname{displacement}(\mathrm{m})$ |
| :--- | :--- |
| $\frac{\mathrm{V}(\mathrm{s})}{\mathrm{s}}$ | $\mathrm{X}(\mathrm{s})=$ displacement $(\mathrm{m} \cdot \mathrm{sec})$
 (in freq domain) |

Dissipation element:
power

$$
\begin{aligned}
P & =v \cdot F=\frac{F^{2}}{B} \\
& =v^{2} \cdot B
\end{aligned}
$$

Through variable energy storage:
$\mathrm{E}=\frac{1}{2} \cdot \frac{1}{\mathrm{k}} \cdot \mathrm{F}_{(\mathrm{F}=\mathrm{kx})}^{2}=\frac{1}{2} \cdot \mathrm{k} \cdot \mathrm{x}^{2}$
Springs are sometimes shown like this:

Damper or friction
B or f

$\mathrm{F}=$ Force $\quad(\mathrm{N})$
$\mathrm{v}=$ velocity $\left(\frac{\mathrm{m}}{\mathrm{sec}}\right)$
$\mathrm{x}=$ displacement (m)
$\mathrm{X}(\mathrm{s})=$ displacement $(\mathrm{m} \cdot \mathrm{sec})$ (in freq domain)

F

Through variable energy storage:
$\mathrm{E}=\frac{1}{2} \cdot \mathrm{M} \cdot \mathrm{v}^{2}$

Electrical

I = current (A)
$\mathrm{V}=$ voltage (V)

Source:

Inductor

Capacitor hooked to ground

Capacitor and resistor

$$
\frac{\mathrm{s}}{\mathrm{k}}
$$

$\frac{s}{k}$
Impedance

$$
\frac{1}{\mathrm{~B}} \text { or } \frac{1}{\mathrm{f}}
$$

Mechanical system with circular motion (rotational)

	Mechanical rotational
Through Variable:	$\mathrm{T}=$ Torque $(\mathrm{N} \cdot \mathrm{m})$
Across Variable:	$\theta=$ angular velocity $\left(\frac{\mathrm{rad}}{\mathrm{sec}}\right)$
$\omega \mathrm{dt}$	$\theta(\mathrm{s})=$ angular displacement (rad) $($ in freq domain)

Electrical

I = current (A)
$\mathrm{V}=$ voltage (V)

Source: \backslash

Moment of Inertia, J

Damper or friction
B or f
power

$$
\begin{aligned}
P & =\mathrm{v} \cdot \mathrm{~T}=\frac{\mathrm{T}^{2}}{\mathrm{~B}} \\
& =\omega^{2} \cdot \mathrm{~B}
\end{aligned}
$$

Through variable energy storage:
$\mathrm{E}=\frac{1}{2} \cdot \frac{1}{\mathrm{k}} \cdot \mathrm{T}^{2}$

Through variable energy storage:
$\mathrm{E}=\frac{1}{2} \cdot \mathrm{~J} \cdot \omega^{2}$
J with friction

B or f sliding friction

Capacitor hooked to ground

Fluid (hydraulic) system

Through Variable:
Across Variable:
Dissipation element:
power

\[\)| P | $=\mathrm{P} \cdot \mathrm{Q}=\frac{\mathrm{Q}^{2}}{\mathrm{R}_{\mathrm{f}}}$ |
| ---: | :--- |
| | $=\mathrm{P}^{2} \cdot \mathrm{R}_{\mathrm{f}}$ |

\]

Fluid

Through Variable: $\quad \mathrm{Q}=$ volumetric flow rate $\left(\frac{\mathrm{m}^{3}}{\mathrm{sec}}\right)$
Across Variable:

$$
\mathrm{P}=\text { Pressure }\left(\frac{\mathrm{N}}{\mathrm{~m}^{2}}\right) \text { or }(\mathrm{Pa})
$$

Dissipation element:
Fluid resistance
Electrical

$$
\begin{aligned}
P & =P \cdot Q=\frac{Q^{2}}{R_{f}} \\
& =P^{2} \cdot R_{f}
\end{aligned}
$$

Through variable energy storage:
$\mathrm{E}=\frac{1}{2} \cdot \mathrm{I} \cdot \mathrm{Q}^{2}$

I = current (A)
$\mathrm{V}=$ voltage
(V)

Impedance
Resistor

R_{f}

Fluid Capacitors

OR

$\mathrm{C}_{\mathrm{f}}=\frac{\Delta \mathrm{volume}}{\begin{array}{c}\Delta \text { pressure } \\ \text { for all capacitors }\end{array}}=\frac{\Delta \mathrm{h} \cdot \mathrm{A}}{\Delta \mathrm{h} \cdot \rho \cdot \mathrm{g}}=\frac{\mathrm{A}}{\rho \cdot \mathrm{g}}$ For open top tank

Piston \& Cylinder
$P=\frac{F}{A}$
$\mathrm{Q}=\mathrm{A} \cdot \mathrm{v}$

Turbines \& pistons convert through variables to across variables \& vice versa, so there are no good electrical analogies.

Yet you can still transform an impedance from a mechanical system into the fluid system. You,ll find that capacitors become inductors, inductors become capacitors and parallel swaps with series.

$$
\begin{aligned}
& Z_{\mathbf{e q}}=\frac{\Delta \cdot P}{Q}=\frac{\left(\frac{T}{K}\right)}{K \cdot \omega}=\frac{1}{K^{2} \cdot \frac{T}{\omega}}=\frac{1}{K^{2}} \cdot \frac{1}{Z_{2}}=\frac{1}{K^{2} \cdot \mathbf{Z}_{2}} \\
& Z_{\mathbf{e q}}=\frac{P}{Q}=\frac{\left(\frac{F}{A}\right)}{A \cdot v}=\frac{1}{A^{2}} \cdot \frac{F}{v}=\frac{1}{A^{2}} \cdot \frac{1}{\mathbf{Z}_{2}}=\frac{1}{\mathrm{~A}^{2} \cdot \mathbf{Z}_{2}}
\end{aligned}
$$

ECE 3510 Electrical Analogies of Mechanical Systems p. 5

Transducers and Transformers

A transducer converts power from one type to another. We can model many of them with transformers.
Transformers increase the through variable and correspondingly decrease the across variable or vice-versa.
Levers

$\mathrm{N}=\frac{\mathrm{r}_{1}}{\mathrm{r}_{2}}=\frac{\mathrm{v}_{1}}{\mathrm{v}_{2}}=\frac{\mathrm{F}_{2}}{\mathrm{~F}_{1}}$
(not really this simple)

Belts, chains, \& gears

$r=$ radius of pulley or pitch radius of gears

$\omega_{1} \mathrm{~T}_{1}$

$$
\mathrm{N}=\frac{\mathrm{r}_{2}}{\mathrm{r}_{1}}=\frac{\omega_{1}}{\omega_{2}}=\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}=\text { gear tooth ratio }\left(\frac{\mathrm{N}_{2}}{\mathrm{~N}_{1}}\right)
$$

Tires, racks, \& conveyors

$r=$ radius of wheel or pitch radius of pinion gear

$$
\mathrm{N}=\frac{1}{\mathrm{r}}=\frac{\omega}{\mathrm{v}}=\frac{\mathrm{F}}{\mathrm{~T}}
$$

Note: $\mathrm{N}=\mathrm{r}$ if the input is linear motion and output is rotational.
DC Motors

$$
\mathrm{N}=\mathrm{K}=\frac{\mathrm{v}_{1}}{\omega}=\frac{\mathrm{T}_{2}}{\mathrm{i}}
$$

