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Routh-Hurwitz  Stability test
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Usually of the Closed-loop transfer function denominator to test fo BIBO stability

Test denominator for poles in CRHP (RHP including imaginary axis)

1. For all poles to be in the LHP, all coefficients must be > 0

For a second-order denominator, that is enough, skip the next step. 

2. If all coefficients are > 0 & order > 2, then:
Create Routh-Hurwitz array:

_
|
|
|
|
|
|
|
|
|
|
|
|
|

sn a
n

a
n 2

a
n 4

a
n 6 .  .  . 0

sn 1 a
n 1

a
n 3

a
n 5

a
n 7 .  .  . 0

& divide

sn 2 b
1

b
2

b
3

b
4 .  .  . 0

c
1

c
2

c
3

c
4sn 3 .  .  . 0

.

.
.
.

.

.
.
.

s0 z
1

0

b
1

=
.a

n 1
a

n 2
.a

n
a

n 3

a
n 1

b
2

=
.a

n 1
a

n 4
.a

n
a

n 5

a
n 1

b
3

=
.a

n 1
a

n 6
.a

n
a

n 7

a
n 1

c
1

=
.b

1
a

n 3
.a

n 1
b

2

b
1

c
2

=
.b

1
a

n 5
.a

n 1
b

3

b
1

c
3

=
.b

1
a

n 7
.a

n 1
b

4

b
1

Look at first column:

All positive = All roots left of imaginary axis 

If any negative or 0, then there are poles on the Imaginary axis or in the RHP (Right-Half Plane)

Count sign reversals down the first column

Sign reversals = number of poles on the Imaginary axis or in the RHP (Right-Half Plane)

0 can be replaced by −ε to see if there are any other sign reversals
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Example Uses ECE 3510    Routh-Hurwitz  Lecture    p.2
The transfer functions of C(s) and P(s) are given below.  In each case determine if the steady-state error will go to 
zero and whether disturbances will be completely rejected.  Be sure to check for closed-loop stability when needed.

0 steady-state error? Reject Disturbances?

e ss( )∞ = 0? e ss( )∞ = 0 for disturbance?

No Noa) C( )s =
s 2

s2 .5 s 4
P( )s =

s 1

s2 .5 s 15 no pole at zero no pole at zero

No stability test needed to answer those questions

Yes (Tentative answer) Nob) C( )s =
s 5

s2 .4 s 3
P( )s =

s 1

s2 .2 s P( )s has pole at zero C( )s has no pole at zero

Must test for stability: Closed loop transfer function  =
.C( )s P( )s

1 .C( )s P( )s
=

.N C( )s N P( )s

.D C( )s D P( )s .N C( )s N P( )s

Closed loop denominator  = .D C( )s D P( )s .N C( )s N P( )s

.C( )s P( )s = .s 5

s2 .4 s 3

s 1

s2 .2 s Closed loop denominator  = .s2 .4 s 3 s2 .2 s .( )s 5 ( )s 1

D H( )s = s4 .6 s3 .12 s2 .12 s 5

Routh-Hurwitz  Stability test
Test denominator for poles in CRHP (RHP including imaginary axis)

1. All coefficients must be > 0

For a second-order denominator, that is enough

2. Create Routh-Hurwitz array:
D H( )s = s4 .6 s3 .12 s2 .12 s 5_

(RH Ex.1)
|
|
|
|
|
|
|
|
|
|
|
|

s4 1 12 5 0

s3 6 12 0

s2 =
.6 12 .1 12

6
10 =

.6 5 .1 0

6
5

s1 =
.10 12 .6 5

10
9 =

.10 0 .6 0

10
0

s0 =
.9 5 .10 0

9
5

Look at first column: All positive, so
All roots left of imaginary axis, so tentative answers above are correct 

If any were negative or 0, then
D H( )s  would have poles on the Imaginary axis or in the RHP (Right-Half Plane)

Alternatively, check the actual roots
Using your calculator, find the roots of: 

0 = s4 .6 s3 .12 s2 .12 s 5 Roots:

1

3.359

0.82 .0.903 j

0.82 .0.903 j

roots all negative, stable

So tentative answers above are correct

ECE 3510    Routh-Hurwitz  Lecture    p.2



ECE 3510    Routh-Hurwitz  Lecture    p.3
More Routh-Hurwitz method examples
RH Ex.2 Given a cloosed-loop denominator: D( )s = s4 .10 s3 .3 s2 .5 s 2 Are all the poles in the OLHP?

_
|
|
|
|
|
|
|
|
|
|
|
|

s4 1 3 2 0

s3 10 5 0

s2 =
.10 3 .1 5

10
2.5 =

.10 2 .1 0

10
2

s1 =
.2.5 5 .10 2

2.5
3 0

s0 =
.3 2 .1 0

3
2

Two sign reversals = two problem poles, in the RHP NO

Two roots positive
Actual roots:

0.062 .0.732 j

0.062 .0.732 j

0.381

9.743
RH Ex.3

C( )s =
.3 s2 8

s3 .2 s2 .4 s
P( )s =

2

s2 3
(Notice that the Plant is not inherently stable)

.C( )s P( )s = .
.3 s2 8

s3 .2 s2 .4 s

2

s2 3
Closed loop denominator  = .s3 .2 s2 .4 s s2 3 ..3 s2 8 2

= s5 .2 s4 .7 s3 .12 s2 .12 s 16
_

Routh-Hurwitz array:
|
|
|
|
|
|
|
|
|
|
|
|
|
|

s5 1 7 12 0

s4 2 12 16

s3 =
.2 7 .1 12

2
1 =

.2 12 .1 16

2
4 0

s2 =
.1 12 .2 4

1
4 =

.1 16 .2 0

1
16

s1 =
.4 4 .1 16

4
0 (-ε) 0

\
Problem, some root(s) in CRHP s0 .ε 16

ε Consider this -ε & you get 2 sign changes, 2 unstable poles\

Doesn't make sense to progress to the next row if all 
you want to know is stability, but if you count above 
as -ε, this answer would come out +, indicating two 
problem poles 

First 2 roots are on 
imaginary axis, unstable

Actual roots:

.2 j
.2 j

1.651

0.175 .1.547 j

0.175 .1.547 jECE 3510    Routh-Hurwitz  Lecture    p.3
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Closed-loop transfer-function denominator Transfer function stable?

a) D( )s = s5 .3 s4 .18 s3 .3 s2 s 2 No The third coefficient is negative, there must be root(s), 
& thus poles, in the closed right half plane.

b) D( )s = s6 .3 s4 .18 s3 .3 s2 s 2 No The s5 coefficient is zero, there must be 
root(s) in the closed right half plane.

c) D( )s = s6 .3 s5 .18 s4 .3 s3 s2 .2 s No The last coefficient is zero, there must be 
root(s) in the closed right half plane.

d) D( )s = .s2 .2 s 5 s2 .4 s 4 Yes Neither factor has unstable poles so together 
they also have none.  Don't multiply and 
complicate matters(Example 1 in text)

e) D( )s = .s2 .2 s 5 s2 .4 s 4 No First factor has at least one unstable pole, so 
together they also have at least one.  Don't 
multiply and complicate matters(Example 2 in text)

f) D( )s = s5 .4 s4 .2 s3 .6 s2 .2 s 1 Can't tell without the full array
_

RH Ex.4
|
|
|
|
|
|
|
|
|
|
|
|

s4 1 2 2 0

s3 4 6 1 0

s2 =
.4 2 .1 6

4
0.5 =

.4 2 .1 1

4
1.75

s1 =
.0.5 6 .4 1.75

0.5
8 =

.0.5 1 .4 0

0.5
1

\
Problem, some root(s) in CRHP 

s0 =
.8 1.75 .0.5 1

8
1.813

\
No need to progress to the next row if all you want to 
know is stability, but this extra steps can tell you 
there are two problem poles 

Actual roots:

3.855

0.187 .0.4 j

0.187 .0.4 j

0.114 .1.147 j

0.114 .1.147 j
Last two roots are in the RHP

No Not stable

RH Ex.5 Use the Routh-Hurwitz method to determine the value range of K that will produce a stable system. 

D( )s = s4 .2 s3 .1 s2 s K Characteristic equation of a feedback sytem.

|
|
|
|
|
|
|
|
|
|
|
|

s4 1 1 K 0

s3 2 1 0

s2 =
.2 1 .1 1

2
0.5

.2 K .1 0

2
= K

s1 .0.5 1 .2 K

0.5
= 1 .4 K 0

s0 .( )1 .4 K K .0.5 0

1 .4 K
= K

K > 0 0 = 1 .4 K K < =
1

4
0.25

0 < K < 0.25ECE 3510    Routh-Hurwitz  Lecture    p.4
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RH Ex.6 Use the Routh-Hurwitz method to determine the value range of K that will produce a stable system. 

D( )s = s4 ..4 K s3 .12 s2 ..2 K s K

|
|
|
|
|
|
|
|
|
|
|
|
|
|

s4 1 12 K 0

s3 .4 K .2 K 0

s2 ..4 K 12 ..1 2 K
.4 K

= 11.5
..4 K K .1 0

.4 K
= K

s1 ..11.5 2 K ..4 K K

11.5
= .2 K .4

11.5
K2 0

s0

..2 K .4

11.5
K2 K

.2 K .4

11.5
K2

= K

K > 0 This could have been seen from the original expression

0 < 2 .4

11.5
K K < =.2

11.5

4
5.75

0 < K < 5.75

RH Ex.7 Use the Routh-Hurwitz method to determine if all the poles are to the left of - 5.

D( )s = s3 .44 s2 .320 s 648 Characteristic equation of a feedback sytem.

Replace all occurances of s with (s - 5) 

( )s 5 3 .44 ( )s 5 2 .320 ( )s 5 648

s3 .15 s2 .75 s 125 .44 s2 .10 s 25 .320 ( )s 5 648

s3 .15 s2 .75 s 125 .44 s2 ..44 10 s .44 25 .320 s .320 5 648 = s3 .29 s2 .45 s 23

No, this has a negative coefficientRH Ex.7b Are all the poles are to the left of - 4?

Replace all occurances of s with (s - 4) 

( )s 4 3 .44 ( )s 4 2 .320 ( )s 4 648

s3 .12 s2 .48 s 64 .44 s2 .8 s 16 .320 ( )s 4 648

s3 .12 s2 .48 s 64 .44 s2 ..44 8 s .44 16 .320 s .320 4 648 = s3 .32 s2 .16 s 8
_

|
|
|
|
|
|
|
|
|

s3 1 16 0

s2 32 8 0

s1 =
.32 16 .1 8

32
15.75 =

.32 0 .1 0

32
0

s0 =
.15.75 8 .32 0

15.75
8

Look at first column: All positive, so all roots are indeed left of -4.

Actual roots of:

0 = s3 .44 s2 .320 s 648

35.5

4.25 .0.438 j

4.25 .0.438 j

Sure enough, all roots are left of -4, and not all left of -5
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