Ex. 1 A Y-connected load is connected to 208-V, 3-phase. It draws 1.2 kW of power at a power factor of 75%, leading.

$$
\mathrm{P}_{3 \phi}:=1.2 \cdot \mathrm{~kW} \quad \mathrm{pf}:=0.75
$$

a) Find the apparent power and the reactive power.
$S_{3 \phi}:=\frac{\mathrm{P}_{3 \phi}}{\mathrm{pf}}$
$\mathrm{S}_{3 \phi}=1.6 \cdot \mathrm{kVA}$
$\mathrm{Q}_{3 \phi}:=-\sqrt{\mathrm{S}_{3 \phi}{ }^{2}-\mathrm{P}_{3 \phi}{ }^{2}}$
$\mathrm{Q}_{3 \phi}=-1.058 \cdot \mathrm{kVAR}$
Negative because the power factor is leading.
b) Find the line current.

Our Approach 1) Change all Δ-connected loads to equivalent Y -connected loads $\mathbf{Z}_{\mathbf{Y}}=\frac{\mathbf{Z}_{\Delta}}{3}$ NOT NEEDED
2) Find all voltages as $\mathrm{V}_{\mathrm{LN}}:=\frac{208 \cdot \mathrm{~V}}{\sqrt{3}} \quad \mathrm{~V}_{\mathrm{LN}}=120.089 \cdot \mathrm{~V}$
3) Change all power numbers to $1 \phi . \quad P_{1 \phi}:=\frac{P_{3 \phi}}{3} \quad P_{1 \phi}=400 \cdot W$
$S_{1 \phi}:=\frac{S_{3 \phi}}{3} \quad S_{1 \phi}=533.333 \cdot \mathrm{VA}$
$\mathrm{Q}_{1 \phi}:=\frac{\mathrm{Q}_{3 \phi}}{3} \quad \mathrm{Q}_{1 \phi}=-352.767 \cdot \mathrm{VAR}$
(
c) Find the values of the load components, assuming they are connected in series.

The components must be a resistor and a capacitor because there is some real power and the power factor is leading.
assume $\omega=377 \cdot \frac{\mathrm{rad}}{\mathrm{sec}}$
$\mathrm{I}_{\mathrm{L}}=4.441 \cdot \mathrm{~A} \mathrm{R}_{\mathrm{L}} \quad \mathrm{R}_{\mathrm{L}}:=\frac{\mathrm{P}_{1 \phi}}{\mathrm{I}_{\mathrm{L}}{ }^{2}}=\frac{\mathrm{P}_{1 \phi}}{\mathrm{I}_{\mathrm{L}}{ }^{2}}=20.28 \cdot \Omega \quad \mathrm{sec} \mathrm{sen} \mathrm{C}_{\mathrm{L}} \quad \mathrm{X}_{\mathrm{C}}:=\frac{\mathrm{Q}_{1 \phi}}{\mathrm{I}_{\mathrm{L}}{ }^{2}} \quad \mathrm{X}_{\mathrm{C}}=-17.885 \cdot \Omega \quad=-\frac{1}{\omega \cdot \mathrm{C}_{\mathrm{L}}} \quad \mathrm{C}_{\mathrm{L}}:=-\frac{1}{\omega \cdot \mathrm{X}_{\mathrm{C}}} \quad \mathrm{C}_{\mathrm{L}}=148.3 \cdot \mu \mathrm{~F}$
d) Find the values of the load components, assuming they are connected in parallel.

Still a resistor and a capacitor.

$$
\mathrm{R}_{\mathrm{Lp}}:=\frac{\mathrm{v}_{\mathrm{LN}}{ }^{2}}{\mathrm{P}_{1 \phi}} \mathrm{R}_{\mathrm{Lp}}>\mathrm{R}_{\mathrm{Lp}}=36.053 \cdot \Omega \mathrm{Cl} \mathrm{C}_{\mathrm{Lp}} \quad \mathrm{X}_{\mathrm{C}}:=\frac{\mathrm{V}_{\mathrm{LN}}{ }^{2}}{\mathrm{Q}_{1 \phi}}
$$

e) Correct the power factor with Y-connected components. Need inductors
$\mathrm{Q}_{1 \text { IInd }}:=-\mathrm{Q}_{1 \phi}=\frac{\mathrm{V}_{\phi}{ }^{2}}{\omega \cdot \mathrm{~L}_{\mathrm{Y}}}$
$\mathrm{L}_{\mathrm{Y}}:=\frac{\mathrm{V}_{\phi}{ }^{2}}{\omega \cdot \mathrm{Q}_{1 \phi}}$
$\mathrm{L}_{\mathrm{Y}}=325.3 \cdot \mathrm{mH}$
f) Correct the power factor with Δ-connected components.

$$
\begin{aligned}
& \mathrm{L}_{\Delta}:=\frac{\left(\sqrt{3} \cdot \mathrm{~V}_{\phi}\right)^{2}}{\omega \cdot \mathrm{Q}_{1 \phi}} \quad \mathrm{~L}_{\Delta}=975.9 \cdot \mathrm{mH} \\
& \text { OR } \omega \cdot \mathrm{L}_{\Delta}=\mathbf{Z}_{\Delta}=3 \cdot \mathbf{Z}_{\mathbf{y}}=3 \cdot \omega \cdot \mathrm{~L}_{\mathrm{Y}} \quad 3 \cdot \mathrm{~L}_{\mathrm{Y}}=975.9 \cdot \mathrm{mH}
\end{aligned}
$$

Ex. 2 From F08, exam 1, Find the following:
a) The line current that would be measured by an ammeter.

$$
\mathrm{V}_{\mathrm{LL}}:=480 \cdot \mathrm{~V} \quad \mathbf{Z}_{\Delta}:=(30+12 \cdot \mathrm{j}) \cdot \Omega
$$

Our Approach

1) Change all Δ-connected loads to equivalent Y -connected loads

$$
\mathbf{Z}_{\mathbf{Y}}:=\frac{\mathbf{Z}_{\boldsymbol{\Delta}}}{3} \quad \mathbf{Z}_{\mathbf{Y}}=10+4 \mathrm{j} \cdot \Omega
$$

2) Find all voltages as $\mathrm{V}_{\mathrm{LN}} \quad \mathrm{V}_{\mathrm{LL}}=480 \cdot \mathrm{~V} \quad \mathrm{~V}_{\mathrm{LN}}:=\frac{\mathrm{V}_{\mathrm{LL}}}{\sqrt{3}} \quad \mathrm{~V}_{\mathrm{LN}}=277.128 \cdot \mathrm{~V}$
3) Change all power numbers to 1ϕ. NOT NEEDED

$$
={ }_{\{ }^{\sum_{i}^{I_{L}} 10 \cdot \Omega}
$$

$$
\mathrm{I}_{\mathrm{L}}:=\frac{\mathrm{V}_{\mathrm{LN}}}{\left|\mathbf{Z}_{\mathbf{Y}}\right|}=\frac{277.128 \cdot \mathrm{~V}}{\sqrt{10^{2}+4^{2} \cdot \Omega}}=25.731 \cdot \mathrm{~A}
$$

b) The power consumed by the three-phase load.
c) The value of Y-connected impedances that would result in exactly the same line currents and same pf.

$$
\mathbf{Z}_{\mathbf{Y}}=10+4 \mathrm{j} \cdot \Omega
$$

d) The value of Y-connected capacitors that would correct the pf.

$$
\begin{aligned}
& \sum_{10 \cdot \Omega}^{\mathrm{I}_{\mathrm{L}}=25.731 \cdot \mathrm{~A}} \begin{array}{l}
\mathrm{P}_{1 \phi}=\mathrm{I}_{\mathrm{L}}{ }^{2} \cdot 10 \cdot \Omega=6.62 \cdot \mathrm{~kW} \\
\mathrm{P}_{3 \phi}=3 \cdot\left(\mathrm{I}_{\mathrm{L}}{ }^{2} \cdot 10 \cdot \Omega\right)=19.86 \cdot \mathrm{~kW} \\
4 \cdot \mathrm{j} \cdot \Omega
\end{array}
\end{aligned}
$$

$$
\mathrm{Q}_{1 \phi}:=\sqrt{\mathrm{S}_{1 \phi}^{2}-\mathrm{P}_{1 \phi}^{2}} \quad \mathrm{Q}_{1 \phi}:=\sqrt{\left(\mathrm{V}_{\mathrm{LN}} \cdot \mathrm{I} \mathrm{~L}\right)^{2}-(6.62 \cdot \mathrm{~kW})^{2}} \quad \mathrm{Q}_{1 \phi}=2.65 \cdot \mathrm{kVAR}
$$

so we need:
$\mathrm{Q}_{\mathrm{C}}:=-\mathrm{Q}_{1 \phi} \quad \mathrm{Q}_{\mathrm{C}}=-2.65 \cdot \mathrm{kVAR}=-\frac{\mathrm{V}_{\mathrm{LN}}{ }^{2}}{\left(\frac{1}{\omega \cdot \mathrm{C}}\right)}=-\mathrm{V}_{\mathrm{LN}}{ }^{2} \cdot \omega \cdot \mathrm{C}$.

$$
\mathrm{C}:=\frac{\mathrm{Q}_{\mathrm{C}}}{-\mathrm{V}_{\mathrm{LN}}{ }^{2} \cdot \omega}
$$

$$
\mathrm{C}=91.5 \cdot \mu \mathrm{~F}
$$

ECE 3600 3-Phase Examples p3

Ex. 3 For the three-phase delta-connected load in fig P1 .7, The line-to-line voltage and line current are:

$$
\mathbf{V}_{\mathbf{A B}}:=480 \cdot \mathrm{~V} \underline{10}^{\circ} \quad \mathbf{I}_{\mathbf{A}}=10 \mathrm{~A} /-40^{\circ}
$$

a) What is $\mathbf{V}_{\mathbf{C A}}$?

Normal phase angles

 \underline{V}_{B} sequence
b) What is the phase current in the load?

$$
\mathrm{I}_{\mathrm{LL}}=\frac{\mathrm{I}_{\mathrm{L}}}{\sqrt{3}} \quad \frac{10 \cdot \mathrm{~A}}{\sqrt{3}}=5.774 \cdot \mathrm{~A}
$$

c) What is the time-average power into the load?

$$
\mathbf{v}_{\mathbf{A N}}:=\frac{480 \cdot \mathrm{~V}}{\sqrt{3}} \underline{\mathcal{L}-30^{\circ}} \quad \text { Since } \quad \mathbf{I}_{\mathbf{A}}=10 \mathrm{~A} / \underline{-40^{\circ}}
$$

I lags \mathbf{V} by 10°
$\theta:=10 \cdot \mathrm{deg}$

$$
=10 \mathrm{~A} /-40^{\circ}
$$

$\mathrm{P}_{1 \phi}=(277.128 \cdot \mathrm{~V} \cdot 10 \cdot \mathrm{~A}) \cdot \cos (\theta)=2.729 \cdot \mathrm{~kW}$
$\mathrm{P}_{3 \phi}=3 \cdot(277.128 \cdot \mathrm{~V} \cdot 10 \cdot \mathrm{~A}) \cdot \cos (\theta)=8.188 \cdot \mathrm{~kW}$
d) What is the phase impedance?

$$
\begin{aligned}
& \mathbf{Z}_{\mathbf{Y}}:=\frac{277.128 \cdot \mathrm{~V}}{10 \cdot \mathrm{~A}} \underline{\rho-30-(-40)^{\circ}} \quad \mathbf{Z}_{\mathbf{Y}}=27.71 \cdot \Omega \quad \underline{/ 10^{\circ}} \\
& \mathbf{Z}_{\Delta}=3 \cdot \mathbf{Z}_{\mathbf{Y}}=83.14 \cdot \Omega \quad \underline{/ 10^{\circ}}
\end{aligned}
$$

Ex. 4 In the three-phase circuit shown in Fig. P1.9. find the following:
a) The line current that would be measured by an ammeter.

Direct way

$$
\begin{array}{ll}
\mathrm{V}_{\mathrm{LL}}:=600 \cdot \mathrm{~V} & \mathbf{Z}_{\boldsymbol{\Delta}}:=(20+11 \cdot \mathrm{j}) \cdot \Omega \\
\mathrm{I}_{\mathrm{AB}}:=\left|\frac{\mathrm{V}_{\mathrm{LL}}}{\mathbf{Z}_{\Delta}}\right| & \mathrm{I}_{\mathrm{AB}}=26.286 \cdot \mathrm{~A} \\
\mathrm{I}_{\mathrm{A}}:=\sqrt{3} \cdot \mathrm{I}_{\mathrm{AB}} & \mathrm{I}_{\mathrm{A}}=45.53 \cdot \mathrm{~A}
\end{array}
$$

Our Approach

$$
\mathrm{V}_{\mathrm{LN}}:=\frac{600 \cdot \mathrm{~V}}{\sqrt{3}} \quad \mathrm{~V}_{\mathrm{LN}}=346.41 \cdot \mathrm{~V}
$$

600 V (rms)
3ϕ source
$A B C$ sequence

$$
\text { All } \underline{\mathbf{Z}} \mathrm{s}=20+j 11 \Omega
$$

Figure P1.9

$$
\begin{aligned}
& \mathbf{Z}_{\mathbf{Y}}:=\frac{\mathbf{Z}_{\Delta}}{3} \quad \mathbf{Z}_{\mathbf{Y}}=6.667+3.667 \mathrm{j} \cdot \Omega \\
& \mathrm{I}_{\mathrm{L}}:=\frac{\mathrm{V}_{\mathrm{LN}}}{\left|\mathbf{Z}_{\mathbf{Y}}\right|}=\frac{346.41 \cdot \mathrm{~V}}{\sqrt{6.667^{2}+3.667^{2}}} \quad \mathrm{I}_{\mathrm{L}}=45.53 \cdot \mathrm{~A}
\end{aligned}
$$

b) The power factor of the three-phase load.

$$
\theta:=\operatorname{atan}\left(\frac{11}{20}\right) \quad \theta=28.811 \cdot \operatorname{deg} \quad \text { pf } \quad \cos (\theta)=0.876
$$

c) The voltage that would be measured between B and D by a voltmeter.

Using $\mathbf{V}_{\mathbf{A}}$ as reference (0°):
$\mathbf{V}_{\mathbf{B C}}:=600 \cdot \mathrm{~V} \cdot \mathrm{e}^{-\mathrm{j} \cdot 90 \cdot \mathrm{deg}}$
$\mathbf{I}_{\mathbf{C A}}=26.286 \cdot \mathrm{~A} \cdot \mathrm{e}^{\mathrm{j} \cdot(150-28.811) \cdot \mathrm{deg}}$
$\mathbf{V}_{\mathbf{C D}}{ }^{:=} \mathbf{I} \mathbf{C A}^{-20 \cdot \Omega}$
$\mathbf{V}_{\mathbf{C D}}=-272.251+449.734 \mathrm{j} \cdot \mathrm{V}$
$\mathbf{V}_{\mathbf{B D}}:=\mathbf{V}_{\mathbf{B C}}+\mathbf{V}_{\mathbf{C D}} \quad \mathbf{V}_{\mathbf{B D}}=-272.251-150.266 \mathrm{j} \cdot \mathrm{V} \quad\left|\mathbf{V}_{\mathbf{B D}}\right|=311 \cdot \mathrm{~V}$
(must be the sum, NOT the difference, see the + and - signs on the drawing.)

Ex. 5 When all you have is impedances and an input voltage, it gets messy \& luckily, it's not a common problem.
Textbook problem 2-2. Figure P2-1 shows a three-phase power system with two loads. The Δ-connected generator is producing a line voltage of 480 V , and the line impedance is $0.09+\mathrm{j} 0.16 \Omega$. Load 1 is Y -connected, with a phase impedance of $2.5 \Omega \underline{/ 36.87^{\circ}}$ and load 2 is Δ-connected, with a phase impedance of $5 \Omega \underline{I-20^{\circ}}$.

a) What is the line voltage at the two loads?

$$
\mathbf{Z}_{\phi \mathbf{1}}:=2.5 \cdot \mathrm{e}^{\mathrm{j} \cdot 36 \cdot 87 \cdot \mathrm{deg}} \cdot \Omega
$$

$$
\mathbf{Z}_{\boldsymbol{\phi} \mathbf{2}}:=5 \cdot \mathrm{e}^{-\mathrm{j} \cdot 20 \cdot \operatorname{deg}} \cdot \Omega
$$

Find an equivalent Y -only circuit: $\quad \mathbf{Z}_{\text {line }}:=(0.09+0.16 \cdot \mathrm{j}) \cdot \Omega$

$\mathbf{Z}_{\text {Yloads }}:=\frac{1}{\frac{1}{\mathbf{Z}_{\boldsymbol{\phi} \mathbf{1}}}+\frac{1}{\mathbf{Z}_{\mathbf{Y} \boldsymbol{\phi} \mathbf{2}}}}$
$\mathbf{Z}_{\text {Ytot }}:=\mathbf{Z}_{\text {line }}{ }^{+} \mathbf{Z}_{\text {Yloads }}$
$\mathbf{I}_{\mathbf{L}}:=\frac{\mathbf{V}_{\mathbf{Y}}}{\mathbf{Z}_{\mathbf{Y t o t}}}$
$\mathbf{V}_{\text {LNload }}:=\mathbf{I}_{\mathbf{L}} \cdot \mathbf{Z}$ Yloads
$\mathbf{V}_{\text {Lload }}:=\mathbf{V}_{\text {LNload }} \cdot \sqrt{3} \quad \quad \mathbf{V}_{\text {Lload }}=435.283-55.47 \mathrm{j} \cdot \mathrm{V}$
$\mathbf{V}_{\text {LNload }}=251.311-32.025 \mathrm{j} \cdot \mathrm{V}$
$\left|\mathbf{Z}_{\text {Yloads }}\right|=1.131 \cdot \Omega$
$\arg \left(\mathbf{Z}_{\text {Yloads }}\right)=2.254 \cdot \operatorname{deg}$
$\left|\mathbf{Z}_{\mathbf{Y t o t}}\right|=1.237 \cdot \Omega$ $\arg \left(\mathbf{Z}_{\mathbf{Y} \text { tot }}\right)=9.516 \cdot \operatorname{deg}$
$\left|\mathbf{I}_{\mathbf{L}}\right|=224.082 \cdot \mathrm{~A}$ $\arg \left(\mathbf{I}_{\mathbf{L}}\right)=-9.516 \cdot \operatorname{deg}$
$\left|\mathbf{V}_{\mathbf{L N l o a d}}\right|=253.343 \cdot \mathrm{~V}$ $\arg \left(\mathbf{V}_{\text {LNload }}\right)=-7.262 \cdot \operatorname{deg}$
$\left|\mathbf{V}_{\text {Lload }}\right|=438.803 \cdot \mathrm{~V}$
b) What is the voltage drop on the transmission lines?

$$
\begin{array}{rll}
\mathbf{V}_{\text {linedrop }}:=\mathbf{I}_{\mathbf{L}} \cdot \mathbf{Z} \text { line } & \mathbf{V}_{\text {linedrop }}=25.817+32.025 \mathrm{j} \cdot \mathrm{~V} \quad\left|\mathbf{V}_{\mathbf{l i n e d r o p}}\right|=41.136 \cdot \mathrm{~V} \\
& \arg \left(\mathbf{V}_{\text {linedrop }}\right)=51.126 \cdot d \mathrm{deg}
\end{array}
$$

Check: $\quad \mathbf{V}_{\mathbf{Y}}-\mathbf{V}_{\mathbf{L N l o a d}}=25.817+32.025 \mathrm{j} \cdot \mathrm{V}$
c) Find the real and reactive powers supplied to each load.
$\mathrm{I}_{\boldsymbol{\phi 1}}:=\frac{\left|\mathbf{V}_{\mathbf{\text { LNload }}}\right|}{\left|\mathbf{Z}_{\boldsymbol{\phi} 1}\right|}$
$\mathrm{I}_{\phi 1}=101.337 \cdot \mathrm{~A}$
$\mathrm{I}_{\mathbf{L} 2}:=\frac{\left|\mathbf{V}_{\mathbf{L N l o a d}}\right|}{\left|\mathbf{Z}_{\mathbf{Y} \boldsymbol{\phi} \mathbf{2}}\right|}$
$\mathrm{I}_{\mathrm{L} 2}=152.006 \cdot \mathrm{~A}$
$P_{3 \phi 1}:=3 \cdot I_{\phi 1} \cdot \operatorname{Re}\left(\mathbf{Z}_{\phi 1}\right) \quad P_{3 \phi 1}=61.615 \cdot \mathrm{~kW}$
$\mathrm{P}_{3 \phi 2}:=3 \cdot \mathrm{I}_{\mathrm{L} 2} \cdot{ }^{2} \cdot \operatorname{Re}\left(\mathbf{Z}_{\mathbf{Y} \boldsymbol{\phi} \mathbf{2}}\right) \quad \mathrm{P}_{3 \phi 2}=108.562 \cdot \mathrm{~kW}$
$Q_{3 \phi 1}:=3 \cdot I_{\phi 1} \cdot{ }^{2} \cdot \operatorname{Im}\left(\mathbf{Z}_{\phi 1}\right)$
$\mathrm{Q}_{3 \phi 1}=46.212 \cdot \mathrm{kVAR}$
$\mathrm{Q}_{3 \phi 2}:=3 \cdot \mathrm{I}_{\mathrm{L} 2} \cdot{ }^{2} \cdot \operatorname{Im}\left(\mathbf{Z}_{\mathbf{Y} \boldsymbol{\phi} \mathbf{2}}\right) \quad \mathrm{Q}_{3 \phi 2}=-39.513 \cdot \mathrm{kVAR}$
d) Find the real and reactive power losses in the transmission line.

$$
\begin{array}{ll}
\mathrm{P}_{3 \phi \mathrm{~L}}:=3 \cdot\left(\left|\mathbf{I}_{\mathbf{L}}\right|\right)^{2} \cdot \operatorname{Re}\left(\mathbf{Z}_{\text {line }}\right) & \mathrm{P}_{3 \phi \mathrm{~L}}=13.557 \cdot \mathrm{~kW} \\
\mathrm{Q}_{3 \phi \mathrm{~L}}:=3 \cdot\left(\left|\mathbf{I}_{\mathbf{L}}\right|\right)^{2} \cdot \operatorname{Im}\left(\mathbf{Z}_{\text {line }}\right) & \mathrm{Q}_{3 \phi \mathrm{~L}}=24.102 \cdot \mathrm{kVAR}
\end{array}
$$

e) Find the real power, reactive power, and power factor supplied by the generator.

$$
\begin{array}{cl}
\mathrm{P}_{3 \phi \text { gen }}:=\mathrm{P}_{3 \phi \mathrm{~L}}+\mathrm{P}_{3 \phi 1}+\mathrm{P}_{3 \phi 2} & \mathrm{P}_{3 \phi \mathrm{gen}}=183.734 \cdot \mathrm{~kW} \\
\mathrm{Q}_{3 \phi \text { gen }}:=\mathrm{Q}_{3 \phi \mathrm{~L}}+\mathrm{Q}_{3 \phi 1}+\mathrm{Q}_{3 \phi 2} & \mathrm{Q}_{3 \phi g \mathrm{en}}=30.801 \cdot \mathrm{kVAR} \quad \mathrm{pf}= \\
\text { f) What is the efficiency of this system? } & \eta=\frac{\mathrm{P}_{3 \phi 1}+\mathrm{P}_{3 \phi 2}}{\mathrm{P}_{3 \phi g \mathrm{gen}}}=92.621 \cdot \%
\end{array}
$$

The next example uses a "one-line diagram" to show how a generator is connected to 3 loads. In these diagrams, one line represents all 3 phases and neutral. Because the individual lines are not shown, there may be notes or symbols to indicate Y or Δ connections. All powers given will be 3 -phase values, all voltages will be line voltages (that is line-to-line) and all currents will line currents. The term "bus" refers common connection area.
Ex. 6 The one-line diagram below shows a single, Y-connected generator and 3 loads. Assume all lines are lossless.

Find:
a) The phase voltage and currents in Load 1.

$$
\begin{array}{lll}
\mathrm{V}_{\mathrm{LL}}:=480 \cdot \mathrm{~V} & \mathrm{~V}_{\mathrm{LN}}:=\frac{\mathrm{V}_{\mathrm{LL}}}{\sqrt{3}} & \mathrm{~V}_{\mathrm{LN}}=277.128 \cdot \mathrm{~V}^{2}=\mathrm{V}_{\mathrm{L} 1 \phi} \\
\mathrm{pf}_{\mathrm{L} 1}:=0.9 & \mathrm{~S}_{\mathrm{L} 1.1 \phi}:=\frac{100 \cdot \mathrm{~kW}}{3 \cdot \mathrm{pf}} & \mathrm{I}_{\mathrm{L} 1}:=\frac{\mathrm{S}_{\mathrm{L} 1.1 \phi}}{\mathrm{~V}_{\mathrm{LN}}}
\end{array} \quad \mathrm{I}_{1}=133.646 \cdot \mathrm{~A}=\mathrm{I}_{\mathrm{L} 1 \phi} .
$$

b) The phase voltage and currents in Load 2.

$$
\begin{aligned}
\mathrm{V}_{\mathrm{LL}}:=480 \cdot \mathrm{~V}=\mathrm{V}_{\mathrm{L} 2 \phi} & \mathrm{pf}_{\mathrm{L} 2}:=0.8 \quad \mathrm{~S}_{\mathrm{L} 2.1 \phi}:=\frac{80 \cdot \mathrm{kVA}}{3} \\
\mathrm{I}_{2}:=\frac{\mathrm{S}_{\mathrm{L} 2.1 \phi}}{\mathrm{~V}_{\mathrm{LN}}} & \mathrm{I}_{2}=96.225 \cdot \mathrm{~A}=\sqrt{3} \cdot \mathrm{I}_{\mathrm{L} 2 \phi} \quad \mathrm{I}_{\mathrm{L} 2 \phi}=\frac{\mathrm{I}_{2}}{\sqrt{3}}=55.556 \cdot \mathrm{~A}
\end{aligned}
$$

c) The real, reactive and apparent power supplied by the generator with the switch to load 3 open.

$$
\begin{aligned}
& \mathrm{P}_{1}:=100 \cdot \mathrm{~kW} \quad \mathrm{P}_{2}:=80 \cdot \mathrm{kVA} \cdot \mathrm{pf} \mathrm{~L} 2^{\mathrm{P}_{2}=64 \cdot \mathrm{~kW} \quad \mathrm{P}_{\mathrm{G}}:=\mathrm{P}_{1}+\mathrm{P}_{2} \quad \mathrm{P}_{\mathrm{G}}=164 \cdot \mathrm{~kW},{ }^{2} .} \\
& \mathrm{Q}_{1}:=\sqrt{\left(\frac{100 \cdot \mathrm{~kW}}{\mathrm{pf}_{\mathrm{L} 1}}\right)^{2}-(100 \cdot \mathrm{~kW})^{2}} \quad \mathrm{Q}_{1}=48.432 \cdot \mathrm{kVAR} \quad \mathrm{Q}_{2}:=\sqrt{(80 \cdot \mathrm{kVA})^{2}-(64 \cdot \mathrm{~kW})^{2}} \quad \mathrm{Q}_{1}=48.432 \cdot \mathrm{kVAR} \\
& \mathrm{Q}_{\mathrm{G}}:=\mathrm{Q}_{1}+\mathrm{Q}_{2} \quad \mathrm{Q}_{\mathrm{G}}=96.432 \cdot \mathrm{kVAR} \\
& \mathrm{~S}_{\mathrm{G}}:=\sqrt{\mathrm{P}_{\mathrm{G}}{ }^{2}+\mathrm{Q}_{\mathrm{G}}{ }^{2}} \quad \mathrm{~S}_{\mathrm{G}}=190.25 \cdot \mathrm{kVAR} \\
& \text { d) The total line current from the generator, } \mathrm{I}_{\mathrm{G}} \text {, with the switch to load } 3 \text { open. } \quad \mathrm{I}_{\mathrm{G}}=\frac{\left(\frac{\mathrm{S}_{\mathrm{G}}}{3}\right)}{\mathrm{V}_{\mathrm{LN}}}=228.836 \cdot \mathrm{~A}
\end{aligned}
$$

e) The real, reactive and apparent power supplied by the generator with the switch to load 3 closed.

$$
\begin{aligned}
& { }^{\mathrm{pf}} \mathrm{~L}^{\prime}:=0.65 \quad \mathrm{~S}_{\mathrm{L} 3.1 \phi}:=\frac{80 \cdot \mathrm{~kW}}{3 \cdot \mathrm{pf}_{\mathrm{L} 3}} \quad \mathrm{Q}_{3}:=-\sqrt{\left(\frac{80 \cdot \mathrm{~kW}}{\mathrm{pf}}\right)^{2}-(80 \cdot \mathrm{~kW})^{2}} \quad \mathrm{Q}_{3}=-93.53 \cdot \mathrm{kVAR} \\
& \mathrm{P}_{\mathrm{G}}:=\mathrm{P}_{1}+\mathrm{P}_{2}+80 \cdot \mathrm{~kW} \quad \mathrm{P}_{\mathrm{G}}=244 \cdot \mathrm{~kW} \\
& \mathrm{Q}_{\mathrm{G}}:=\mathrm{Q}_{1}+\mathrm{Q}_{2}+\mathrm{Q}_{3} \\
& \mathrm{Q}_{\mathrm{G}}=2.902 \cdot \mathrm{kVAR} \\
& \mathrm{~S}_{\mathrm{G}}:=\sqrt{\mathrm{P}_{\mathrm{G}}{ }^{2}+\mathrm{Q}_{\mathrm{G}}{ }^{2}} \\
& \mathrm{~S}_{\mathrm{G}}=244.017 \cdot \mathrm{kVAR}
\end{aligned}
$$

f) How does the total line apparent power from the generator, S_{G}, compare to the sum of the three individual apparent powers, $\mathrm{S}_{1}+\mathrm{S}_{2}+\mathrm{S}_{3}$? If they aren't equal, why not? (Switch closed)

$$
3 \cdot \mathrm{~S}_{\mathrm{L} 1.1 \phi^{+}} 80 \cdot \mathrm{kVAR}+3 \cdot \mathrm{~S}_{\mathrm{L} 3.1 \phi}=314.188 \cdot \mathrm{kVAR} \not \not \neq \mathrm{S}_{\mathrm{G}}=244.017 \cdot \mathrm{kVAR}
$$

Can't Add Magnitudes

g) The total line current from the generator, I_{G}, with the switch to load 3 closed.

$$
\mathrm{I}_{\mathrm{G}}:=\frac{\left(\frac{\mathrm{S}_{\mathrm{G}}}{3}\right)}{\mathrm{V}_{\mathrm{LN}}} \quad \mathrm{I}_{\mathrm{G}}=293.507 \cdot \mathrm{~A}
$$

h) How does the total line current from the generator, I_{G}, compare to the sum of the three individual currents, $\mathrm{I}_{1}+\mathrm{I}_{2}+\mathrm{I}_{3}$? If they aren't equal, why not? (Switch closed)

$$
\begin{array}{cc}
\mathrm{I}_{3}:=\frac{\mathrm{S}_{\mathrm{L} 3.1 \phi}}{\mathrm{~V}_{\mathrm{LN}}} & \mathrm{I}_{3}=148.039 \cdot \mathrm{~A} \\
\mathrm{I}_{1}+\mathrm{I}_{2}+\mathrm{I}_{3}=377.909 \cdot \mathrm{~A} \neq \mathrm{I}_{\mathrm{G}}=293.507 \cdot \mathrm{~A}
\end{array}
$$

